
_1

Verifique a viabilidade termodinâmica da reação reversível em fase líquida, no sentido da obtenção de B,

$$\mathsf{A} \Longrightarrow \mathsf{B}$$

na faixa de temperatura entre T₁ e T₂. O potencial químico dos participantes da reação varia com a temperatura conforme o gráfico abaixo. Justifique a sua resposta. **(valor: 10,0 pontos)**

2

Calcule a constante de equilíbrio a 350 °C para a reação

$$H_2 + I_2 \stackrel{k_1}{\Longrightarrow} 2 HI$$

a partir dos dados abaixo.

Reação	E (kJ mol ⁻¹)	A (L mol ⁻¹ s ⁻¹)
Sentido 1	165,1	1,6 x 10 ¹¹
Sentido 2	186,0	1,2 x 10 ¹⁰

E é a energia de ativação e **A** é o fator de freqüência ou pré-exponencial. (R = 8,314 J mol⁻¹ K⁻¹).

(valor: 10,0 pontos)

3

Um critério de segurança para tubulações que podem ser tocadas por operadores indica que a sua temperatura superficial não deva ultrapassar 50 °C, de modo a evitar queimaduras.

Uma tubulação com um diâmetro de 0,05 m e espessura de parede desprezível, transporta vapor saturado a uma temperatura de 130°C através de um ambiente cuja temperatura é de 30°C. Esta tubulação encontra-se isolada termicamente com uma camada de 0,04 m de espessura de um isolante de condutividade térmica igual a 1,5 W m⁻¹ K⁻¹.

Verifique se o critério de segurança apresentado é satisfeito determinando a temperatura da superfície externa da camada de isolante.

Considere que:

- a superfície externa do isolante é coberta por uma película com baixa emissividade, de tal forma que os efeitos da radiação térmica podem ser desprezados no equacionamento da taxa de transferência de calor presente no sistema;
- nos cálculos, a resistência térmica convectiva no interior da tubulação é desprezível, e o coeficiente de transferência de calor (coeficiente de película) na superfície externa da tubulação é igual a 10 W m⁻² K⁻¹.

Informações adicionais:

Resistência térmica convectiva: $R_{conv} = \frac{1}{hA}$

Resistência térmica condutiva, parede cilíndrica:

$$R_{cond} = \frac{\ln \begin{pmatrix} D_e \\ D_i \end{pmatrix}}{2 \pi k L}$$

onde A é a área superficial; D_e e D_i , os diâmetros interno e externo da parede cilíndrica através da qual há a transferência de calor; k, a condutividade térmica e L, o comprimento da parede cilíndrica, na direção axial. (valor: 10,0 pontos)

4

Uma regra prática diz que para cada dez graus Celsius de aumento na temperatura a velocidade de reação é duplicada. Na verdade, essa afirmação é válida somente para certas combinações de energia de ativação e faixas de temperatura. Com base nestas observações:

- (a) calcule o percentual de diminuição de volume de reator, caso fosse possível aumentar de 100 °C para 120 °C a temperatura de operação de um reator de escoamento contínuo ideal isotérmico, mantendo a conversão e as outras condições de operação constantes:

 (valor: 5,0 pontos)
- (b) calcule a energia de ativação para essa reação.

Dados/Informações Adicionais:

Lei de Arrhenius: $k(T) = Ae^{-E/RT}$

Constante universal dos gases ideais: R = 8,314 J mol⁻¹ K⁻¹

 $(-r_{\Lambda})$ = velocidade de consumo do reagente A

X = conversão do reagente A

Reator tubular	Reator de mistura						
$\frac{V_t}{F_{Ao,t}} = \int_0^{X_t} \frac{dX}{(-r_A)}$	$\frac{V_m}{F_{Ao,m}} = \frac{X_m - X_o}{(-r_A)}$						
$V_{t} = $ volume do reator tubular	$V_{\scriptscriptstyle m}=$ volume do reator de mistura						
$F_{{\scriptscriptstyle Ao}, t} =$ vazão molar de alimentação do reator tubular	$F_{{\scriptscriptstyle Ao,m}} =$ vazão molar de alimentação do reator de mistura						

(valor: 5,0 pontos)

5

Na fábrica de processamento de óleos vegetais Processol S.A., a etapa de clarificação do óleo é seguida por uma etapa de filtração que utiliza dois filtros-prensa para a separação do adsorvente. Um representante comercial da Adsorptiva do Brasil Ltda garante que a sua terra de adsorção, mesmo custando mais por quilograma, é economicamente mais vantajosa quando utilizada para o "branqueamento" do óleo e também como auxiliar de filtração (coadjuvante de filtração), pois pode até mesmo eliminar a necessidade do segundo filtro-prensa utilizado pela Processol.

Ensaios comparativos realizados na fábrica forneceram os seguintes dados:

TABELA1 ENSAIOS DE FILTRAÇÃO

	Volume de Filtrado (m³)							
Tempo (s)	Adsortiva	Convencional						
0	0	0						
150	0,25	0,12						
450	0,50	0,25						

TABELA 2 ENSAIOS DE ADSORÇÃO COM 1% DE TERRA A 25°C

	Absorbância Relativa do Óleo a 420 nm						
Tempo (min)	Adsortiva	Convencional					
0	1	1					
10	0,30	0,60					
20	0,20	0,45					
30	0,15	0,40					

Enumere três possíveis razões que poderiam justificar a afirmação do representante da Adsorptiva do Brasil Ltda. (valor: 10,0 pontos)

6

Razões econômicas e ambientais indicam a necessidade de recuperar uma corrente de gás contendo 35% de amônia e 65% de ar, em volume. Para tal, um engenheiro químico pretende utilizar uma torre de absorção que opera em contracorrente com água limpa, a uma pressão de 1 bar. Considerando os dados da figura abaixo, calcule o número mínimo de moles de água necessário, para cada 100 moles de gás de entrada, para recuperar 99% da amônia. (valor: 10,0 pontos)

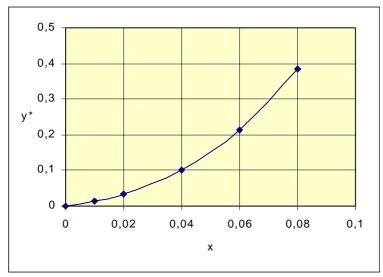
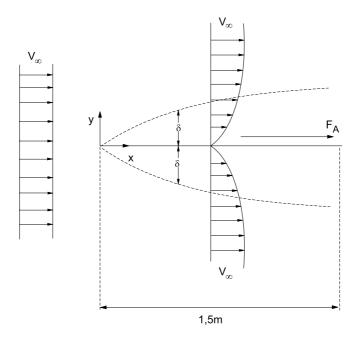


Figura 1 – Fração molar de amônia para a mistura NH₃ – ar, y*, em função da fração molar na fase líquida, x.

A teoria da camada limite, desenvolvida no início do século XX, é, segundo alguns autores, um dos últimos grandes avanços teóricos no campo da Mecânica dos Fluidos. A possibilidade de previsão teórica da força de arrasto em corpos submersos com diversas geometrias forneceu uma maior consistência aos projetos envolvendo este parâmetro. Uma geometria típica neste tipo de problema é a placa plana, cujos procedimentos de cálculo podem ser adaptados a outras geometrias.

Determine a força de arrasto F_A em uma placa plana (3,0 m x 1,5 m), de espessura desprezível, quando o ar (fluido newtoniano com $\rho = 1,2$ kg m⁻³ e $\mu = 2,0$ x 10⁻⁵ kg m⁻¹ s⁻¹) se desloca a uma velocidade de 5 m s⁻¹, na direção normal à aresta de 3,0 m.

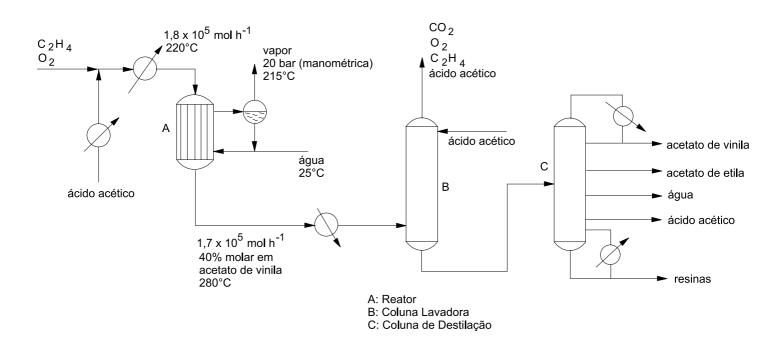
Considere que o escoamento sobre as duas superfícies da placa (ver Figura) ocorre em regime laminar e pode ser descrito por:


$$\frac{\mathbf{v}_{\mathbf{x}}}{\mathbf{V}_{\infty}} = 2\left(\frac{\mathbf{y}}{\delta}\right) - \left(\frac{\mathbf{y}}{\delta}\right)^2$$

$$\frac{\delta}{x} = \frac{5,48}{\text{Re}_x^{0,5}}$$

$$Re_x = \frac{\rho \ V_{\infty} \ x}{\mu}$$

onde V_{∞} é a velocidade do escoamento em região afastada da placa; δ é a espessura da camada limite; Re_{χ} é o Número de Reynolds local; ρ e μ são, respectivamente, a densidade e a viscosidade do fluido escoando.


Lembre-se de que a tensão cizalhante local na superfície da placa é dada por: $\tau_p = \mu \frac{\partial v_x}{\partial y} \bigg|_{y=0}$

(valor: 10,0 pontos)

ATENÇÃO: AS QUESTÕES 8,9 e 10 SE REFEREM AO PROCESSO DESCRITO EM SEGUIDA

O fluxograma abaixo representa, de modo simplificado, um processo para produção de acetato de vinila, a partir de etileno (C_2H_4) e ácido acético ($C_2H_4O_2$):

O reator opera em fase gasosa, empregando paládio como catalisador. As duas principais reações que ali ocorrem são:

$$\begin{array}{l} {\rm C_2H_4 + C_2H_4O_2 + 0.5\ O_2 \rightarrow\ CH_3\text{-}COOCH=CH_2 + H_2O} \\ {\rm C_2H_4 + 3\ O_2 \ \rightarrow\ 2\ CO_2 + 2\ H_2O} \end{array}$$

Reações secundárias, não descritas, produzem acetato de etila e compostos de elevada massa molar (resinas) gerados pela polimerização do acetato de vinila, na descarga do reator.

Os gases que deixam o reator são resfriados e alimentados a uma coluna lavadora, que separa os componentes condensáveis (água, acetatos, resinas e ácido acético) dos incondensáveis (dióxido de carbono, etileno e oxigênio). A solução obtida no fundo da lavadora é fracionada em uma coluna de destilação.

O conjunto de reações que se desenvolve no reator é globalmente exotérmico. Para o controle da temperatura do reator o mesmo deverá ser resfriado, aproveitando-se a energia liberada para a geração de vapor. Considerando as informações constantes no fluxograma e os dados abaixo, calcule a quantidade de vapor gerada no processo.

- entalpia global de reação (considerando os efeitos combinados de todas as reações), a 25 °C e na pressão de operação: DH_r = - 217,6 kJ mol⁻¹ de acetato de vinila produzido.
- capacidade calorífica molar média das correntes gasosas (admitida constante):
- na alimentação do reator: Cp = 110 J mol-1 K-1
- Cp = 140 J mol⁻¹ K⁻¹ - na saída do reator:
- entalpia do vapor saturado, relativa à água de alimentação a 25°C: 2.701,5 kJ kg⁻¹

(valor: 10,0 pontos)

No processo descrito na página anterior, a coluna de destilação fraciona a solução que deixa o fundo da lavadora. Além do produto principal (acetato de vinila), obtêm-se:

- acetato de etila: tem valor comercial, segue para tancagem e é vendido.
- ácido acético: é reciclado para o processo.

A corrente de água e o produto de fundo da coluna devem ser descartados.

- a) Determinar uma destinação adequada, do ponto de vista ambiental, para o produto de fundo que contém compostos orgânicos poliméricos de ponto de ebulição elevados. (valor: 5,0 pontos)
- b) A corrente de água contém ainda 1% molar de ácido acético como contaminante. A neutralização do ácido torna-se imperativa antes do seu descarte. Supondo a utilização de um tanque de neutralização de operação contínua, esquematize a instrumentção necessária à sua operação automática. (valor: 5,0 pontos)

No processo descrito na página anterior, a fase gasosa que deixa o topo da coluna lavadora contém etileno e oxigênio que não reagiram, dióxido de carbono formado no reator e ácido acético, que satura a fase gasosa em função do contato com a fase líquida na coluna.

Considerando que o processo de separação dos constituintes da mistura gasosa por compressão e condensação parcial é economicamente inviável, esquematize um fluxograma de operação que permita a recuperação e o reciclo do etileno para o reator, assim como o descarte adequado para a atmosfera da fase gasosa restante.

Observações:

- O dióxido de carbono é altamente solúvel em soluções alcalinas.
- O ácido acético é solúvel em água em qualquer proporção. (valor: 10,0 pontos)

IMPRESSÕES SOBRE A PROVA

As questões abaixo visam a levantar sua opinião sobre a qualidade e a adequação da prova que você acabou de realizar e também sobre o seu desempenho na prova.

Assinale as alternativas correspondentes à sua opinião e à razão que explica o seu desempenho nos espaços próprios (parte inferior) do Cartão-Resposta.

Agradecemos sua colaboração.

Qual o ano de conclusão deste seu curso de graduação?

- (A) 2000.
- (B) 1999.
- (C) 1998.
- (D) 1997.
- (E) Outro.

Qual o grau de dificuldade desta prova?

- (A) Muito fácil.
- (B) Fácil.
- (C) Médio.
- (D) Difícil.
- (E) Muito difícil.

_3

Quanto à extensão, como você considera a prova?

- (A) Muito longa.
- (B) Longa.
- (C) Adequada.
- (D) Curta.
- (E) Muito curta.

4

Para você, como foi o tempo destinado à resolução da prova?

- (A) Excessivo.
- (B) Pouco mais que suficiente.
- (C) Suficiente.
- (D) Quase suficiente.
- (E) Insuficiente.

5

As questões da prova apresentam enunciados claros e objetivos?

- (A) Sim, todas apresentam.
- (B) Sim, a maioria apresenta.
- (C) Sim, mas apenas cerca de metade apresenta.
- (D) Não, poucas apresentam.
- (E) Não, nenhuma apresenta.

6

Como você considera as informações fornecidas em cada questão para a sua resolução?

- (A) Sempre excessivas.
- (B) Sempre suficientes.
- (C) Suficientes na maioria das vezes.
- (D) Suficientes somente em alguns casos.
- (E) Sempre insuficientes.

17

Como você avalia a adequação da prova aos conteúdos definidos para o Provão/2000 desse curso?

- (A) Totalmente adequada.
- (B) Medianamente adequada.
- (C) Pouco adequada.
- (D) Totalmente inadequada.
- (E) Desconheço os conteúdos definidos para o Provão/2000.

8

Como você avalia a adequação da prova para verificar as habilidades que deveriam ter sido desenvolvidas durante o curso, conforme definido para o Provão/2000?

- (A) Plenamente adequada.
- (B) Medianamente adequada.
- (C) Pouco adequada.
- (D) Totalmente inadequada.
- (E) Desconheço as habilidades definidas para o Provão/2000.

9

Com que tipo de problema você se deparou mais freqüentemente ao responder a esta prova?

- (A) Desconhecimento do conteúdo.
- (B) Forma de abordagem do conteúdo diferente daquela a que estou habituado.
- (C) Falta de motivação para fazer a prova.
- (D) Espaço insuficiente para responder às questões.
- (E) Não tive qualquer tipo de dificuldade para responder à prova.

Como você explicaria o seu desempenho em cada questão da prova?

Nú	meros referentes ao CARTÃO-RESPOSTA.	10	11	12	13	14	15	16	17	18	19
	Números das questões da prova.	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10
	O conteúdo										
(A)	não foi ensinado; nunca o estudei.										
(B)	não foi ensinado; mas o estudei por conta própria.										
	foi ensinado de forma inadequada ou superficial.										
(D)	foi ensinado há muito tempo e não me lembro mais.										
(E)	foi ensinado com profundidade adequada e suficiente.										