NOTAÇÕES

 \mathbb{C} : conjunto dos números complexos. $[a,b] = \{x \in \mathbb{R} ; a \le x \le b\}.$ Q : conjunto dos números racionais. $|a, b| = \{x \in \mathbb{R} : a < x < b\}.$ i: unidade imaginária ; $i^2 = -1$. \mathbb{R} : conjunto dos números reais. z = x + iy, $x, y \in \mathbb{R}$. \mathbb{Z} : conjunto dos números inteiros. \bar{z} : conjugado do número complexo $z \in \mathbb{C}$. $\mathbb{N} = \{0, 1, 2, 3, \ldots\}.$ $\mathbb{N}^* = \{1, 2, 3, \ldots\}.$ |z|: módulo do número complexo $z \in \mathbb{C}$. \emptyset : conjunto vazio. AB: segmento de reta unindo os pontos $A \in B$. $A \setminus B = \{x \in A : x \notin B\}.$ $m(\overline{AB})$: medida (comprimento) de \overline{AB} .

Questão 1. Considere os conjuntos $S = \{0, 2, 4, 6\}$, $T = \{1, 3, 5\}$ e $U = \{0, 1\}$ e as afirmações:

- $I. \quad \{0\} \in S \quad \text{e} \quad S \cap U \neq \emptyset.$
- II. $\{2\} \subset S \setminus U$ e $S \cap T \cap U = \{0, 1\}$.
- III. Existe uma função $f: S \to T$ injetiva.
- IV. Nenhuma função $g:T\to S$ é sobrejetiva.

Então, é(são) verdadeira(s)

- A () apenas I.
- B () apenas IV.
- C () apenas I e IV.

- D () apenas II e III.
- E () apenas III e IV.

Questão 2. Em uma mesa de uma lanchonete, o consumo de 3 sanduíches, 7 xícaras de café e 1 pedaço de torta totalizou R\$31,50. Em outra mesa, o consumo de 4 sanduíches, 10 xícaras de café e 1 pedaço de torta totalizou R\$42,00. Então, o consumo de 1 sanduíche, 1 xícara de café e 1 pedaço de torta totaliza o valor de

- **A** () R\$17,50.
- **B** () R\$16,50.
- **C** () R\$12,50.

- **D** () R\$10,50.
- **E** () R\$9,50.

Questão 3. Uma circunferência passa pelos pontos A=(0,2), B=(0,8) e C=(8,8). Então, o centro da circunferência e o valor de seu raio, respectivamente, são

- **A** () (0,5) e 6.
- **B** () (5,4) e 5.
- C () (4,8) e 5,5.

- ${f D}$ () $(4,5) \ {
 m e} \ 5.$
- **E** () (4,6) e 5.

Questão 4. Sobre o número $x = \sqrt{7 - 4\sqrt{3}} + \sqrt{3}$ é correto afirmar que

- **A** () $x \in]0, 2[$.
- \mathbf{B} () x é racional.
- \mathbf{C} () $\sqrt{2x}$ é irracional.

- ${f D}$ () x^2 é irracional.
- **E** () $x \in]2, 3[$.

Questão 5. Considere o triângulo de vértices A , B e C , sendo D um ponto do lado \overline{AB} e E um ponto do lado \overline{AC} . Se $m(\overline{AB}) = 8 \mathrm{cm}$, $m(\overline{AC}) = 10 \mathrm{cm}$, $m(\overline{AD}) = 4 \mathrm{cm}$ e $m(\overline{AE}) = 6 \mathrm{cm}$, a razão das áreas dos triângulos ADE e ABC é				
A () $\frac{1}{2}$.	B () $\frac{3}{5}$.	${f C}$ () ${3\over 8}$.	D () $\frac{3}{10}$.	E () $\frac{3}{4}$.
Questão 6. Em um triângulo retângulo, a medida da mediana relativa à hipotenusa é a média geométrica das medidas dos catetos. Então, o valor do cosseno de um dos ângulos do triângulo é igual a				
A () $\frac{4}{5}$.		B () $\frac{2+\sqrt{3}}{5}$.	C () $\frac{1}{2}\sqrt{2+\sqrt{3}}$.	
D () $\frac{1}{4}\sqrt{4+}$	$\sqrt{3}$.	E () $\frac{1}{3}\sqrt{2+\sqrt{3}}$.		
Questão 7. A circunferência inscrita num triângulo equilátero com lados de 6 cm de comprimento é a interseção de uma esfera de raio igual a 4 cm com o plano do triângulo. Então, a distância do centro da esfera aos vértices do triângulo é (em cm)				
A () $3\sqrt{3}$.	B () 6.	C () 5.	D () 4.	E () $2\sqrt{5}$.
Questão 8. Uma esfera de raio r é seccionada por n planos meridianos. Os volumes das respectivas cunhas esféricas contidas em uma semi-esfera formam uma progressão aritmética de razão $\frac{\pi r^3}{45}$. Se o volume da menor cunha for igual a $\frac{\pi r^3}{18}$, então n é igual a				
A () 4.	B () 3.	C () 6.	D () 5.	E () 7.
Questão 9. Considere um prisma regular em que a soma dos ângulos internos de todas as faces é 7200°. O número de vértices deste prisma é igual a				
A () 11.	B () 32.	C () 10.	D () 20.	E () 22.
Questão 10. Em relação a um sistema de eixos cartesiano ortogonal no plano, três vértices de um tetraedro regular são dados por $A=(0,0),\ B=(2,2)$ e $C=(1-\sqrt{3},1+\sqrt{3}).$ O volume do tetraedro é				
A () $\frac{8}{3}$.	B () 3.	C () $\frac{3\sqrt{3}}{2}$.	D () $\frac{5\sqrt{3}}{2}$.	E () 8.
Questão 11. No desenvolvimento de $(ax^2 - 2bx + c + 1)^5$ obtém-se um polinômio $p(x)$ cujos coeficientes somam 32. Se 0 e -1 são raízes de $p(x)$, então a soma $a + b + c$ é igual				
a A () $-\frac{1}{2}$.	B () $-\frac{1}{4}$.	C () $\frac{1}{2}$.	D () 1.	E () $\frac{3}{2}$.

Questão 12. O menor inteiro positivo n para o qual a diferença $\sqrt{n}-\sqrt{n-1}\,$ fica menor que $0,01\,$ é

A () 2499. **B** () 2501. **C** () 2500. **D** () 3600. **E** () 4900.

Questão 13. Seja $D = \mathbb{R} \setminus \{1\}$ e $f: D \to D$ uma função dada por

$$f(x) = \frac{x+1}{x-1} \ .$$

Considere as afirmações:

I. f é injetiva e sobrejetiva.

f é injetiva, mas não sobrejetiva.

III. $f(x) + f\left(\frac{1}{x}\right) = 0$, para todo $x \in D$, $x \neq 0$. IV. $f(x) \cdot f(-x) = 1$, para todo $x \in D$.

Então, são verdadeiras

A () apenas I e III.

B () apenas I e IV.

C () apenas II e III.

D () apenas I, III e IV. **E** () apenas II, III e IV.

Questão 14. O número complexo 2 + i é raiz do polinômio

$$f(x) = x^4 + x^3 + px^2 + x + q ,$$

com $p, q \in \mathbb{R}$. Então, a alternativa que mais se aproxima da soma das raízes reais de f é

A () 4.

B() -4. **C**() 6. **D**() 5. **E**() -5.

Questão 15. Considere a equação em x

$$a^{x+1} = b^{1/x} \quad .$$

onde a e b são números reais positivos, tais que $\ln b = 2 \ln a > 0$. A soma das soluções da equação é

A() 0. **B**() -1. **C**() 1. **D**() $\ln 2$.

E () 2.

Questão 16. O intervalo $I \subset \mathbb{R}$ que contém todas as soluções da inequação

$$\arctan \frac{1+x}{2} + \arctan \frac{1-x}{2} \ge \frac{\pi}{6}$$

A() [-1,4]. **B**() [-3,1]. **C**() [-2,3]. **D**() [0,5]. **E**() [4,6].

Questão 17. Seja $z \in \mathbb{C}$ com |z| = 1. Então, a expressão $\left| \frac{1 - \overline{z}w}{z - w} \right|$ assume valor

A () maior que 1, para todo $w \operatorname{com} |w| > 1$.

B () menor que 1, para todo w com |w| < 1.

C () maior que 1, para todo $w \text{ com } w \neq z$.

D () igual a 1 , independente de w com $w \neq z$.

E () crescente para |w| crescente, com |w| < |z|.

Questão 18. O sistema linear

$$\begin{cases} bx + y &= 1 \\ by + z &= 1 \\ x + bz &= 1 \end{cases}$$

não admite solução se e somente se o número real b for igual a

A ()
$$-1$$
.

A()
$$-1$$
. **B**() 0 . **C**() 1 . **D**() 2 . **E**() -2 .

Questão 19. Retiram-se 3 bolas de uma urna que contém 4 bolas verdes, 5 bolas azuis e 7 bolas brancas. Se P_1 é a probabilidade de não sair bola azul e P_2 é a probabilidade de todas as bolas sairem com a mesma cor, então a alternativa que mais se aproxima de $P_1 + P_2 \, \text{\'e}$

$$\mathbf{E} \ (\) \ 0,40$$

Questão 20. A distância focal e a excentricidade da elipse com centro na origem e que passa pelos pontos (1,0) e (0,-2) são, respectivamente,

A()
$$\sqrt{3} = \frac{1}{2}$$
. **B**() $\frac{1}{2} = \sqrt{3}$. **C**() $\frac{\sqrt{3}}{2} = \frac{1}{2}$. **D**() $\sqrt{3} = \frac{\sqrt{3}}{2}$. **E**() $2\sqrt{3} = \frac{\sqrt{3}}{2}$.

As questões dissertativas, numeradas de 21 a 30, devem ser resolvidas e respondidas no caderno de soluções.

Questão 21. Seja a_1, a_2, \ldots uma progressão aritmética infinita tal que

$$\sum_{k=1}^{n} a_{3k} = n\sqrt{2} + \pi n^2, \quad \text{para } n \in \mathbb{N}^*.$$

Determine o primeiro termo e a razão da progressão.

Questão 22. Seja C a circunferência de centro na origem, passando pelo ponto P=(3,4). Se t é a reta tangente a C por P, determine a circunferência C' de menor raio, com centro sobre o eixo x e tangente simultaneamente à reta t e à circunferência C.

Questão 23. Sejam A e B matrizes 2×2 tais que AB = BA e que satisfazem à equação matricial $A^2 + 2AB - B = 0$. Se B é inversível, mostre que

(a)
$$AB^{-1} = B^{-1}A$$
 e que (b) A é inversível.

Questão 24. Seja n o número de lados de um polígono convexo. Se a soma de n-1ângulos (internos) do polígono é 2004° , determine o número n de lados do polígono.

Questão 25. (a) Mostre que o número real $\alpha = \sqrt[3]{2+\sqrt{5}} + \sqrt[3]{2-\sqrt{5}}$ é raíz da equação $x^3 + 3x - 4 = 0.$

(b) Conclua de (a) que α é um número racional.

Questão 26. Considere a equação em $x \in \mathbb{R}$

$$\sqrt{1+mx} = x + \sqrt{1-mx} \quad ,$$

sendo m um parâmetro real.

- (a) Resolva a equação em função do parâmetro m.
- (b) Determine todos os valores de m para os quais a equação admite solução não nula.

Questão 27. Um dos catetos de um triângulo retângulo mede $\sqrt[3]{2}$ cm. O volume do sólido gerado pela rotação deste triângulo em torno da hipotenusa é π cm³. Determine os ângulos deste triângulo.

Questão 28. São dados dois cartões, sendo que um deles tem ambos os lados na cor vermelha, enquanto o outro tem um lado na cor vermelha e o outro lado na cor azul. Um dos cartões é escolhido ao acaso e colocado sobre uma mesa. Se a cor exposta é vermelha, calcule a probabilidade de o cartão escolhido ter a outra cor também vermelha.

Questão 29. Obtenha todos os pares (x, y), com $x, y \in [0, 2\pi]$, tais que

$$\operatorname{sen}(x+y) + \operatorname{sen}(x-y) = \frac{1}{2}$$

$$sen x + cos y = 1$$

Questão 30. Determine todos os valores reais de a para os quais a equação

$$(x-1)^2 = |x-a|$$

admita exatamente três soluções distintas.