

Físico

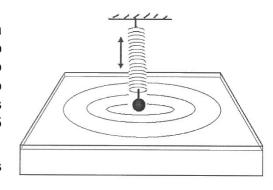
Instruções

- Na parte inferior desta capa, preencha todos os espaços destinados à sua identificação.
- Se, em qualquer outro local deste Caderno, você assinar, rubricar, escrever mensagem, etc., será automaticamente excluído do Processo Seletivo.
- Este Caderno contém 05 questões. Se estiver incompleto ou contiver imperfeição gráfica que prejudique a leitura, peça imediatamente ao Fiscal que o substitua.
- Respostas e rascunhos deverão ser redigidos com a Caneta entregue pelo Fiscal. Em nenhuma hipótese se avaliará resposta escrita com grafite.
- Escreva as respostas de modo legível. Dúvida gerada por grafia, sinal ou rasura implicará redução de pontos.
- 5 O verso da capa e as páginas em branco deste Caderno servirão para rascunho.
- Escreva cada resposta dentro do espaço a ela reservado. O que você escrever fora desse espaço não será avaliado.
- Antes de retirar-se definitivamente da sala, devolva ao Fiscal os dois Cadernos, a Folha de Respostas e a Caneta.

Identificação do Candidato

Nome completo (em letra de forma)	Nº da Inscrição

Nº da Turma	Assinatura



Escreva a resolução completa de cada questão desta prova no espaço apropriado.

Mostre os cálculos ou o raciocínio utilizado para chegar ao resultado final.

Questão 1

Num experimento de laboratório, um corpo é preso a uma mola que executa um Movimento Harmônico Simples na direção vertical, com período de 0,2 s. Ao atingir o ponto mais baixo da sua trajetória, o corpo toca a superfície de um líquido, originando pulsos circulares que se propagam com velocidade de 0,5 m/s, como ilustrado na figura ao lado.

Considerando as informações dadas, atenda às solicitações abaixo.

- A) Determine a frequência da onda originada dos pulsos que se propagam pela superfície do líquido.
- **B)** Determine o comprimento de onda, ou seja, a distância entre duas cristas consecutivas dessa onda.

 Espaço para a resposta	
1 3 1	

Uma prensa mecânica passou tanto tempo fora de uso que seu parafuso central, constituído de alumínio, emperrou na região de contato com o suporte de ferro, conforme mostrado nas figuras 1 e 2, abaixo.

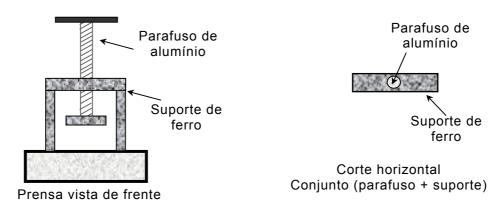


Figura 1 Figura 2

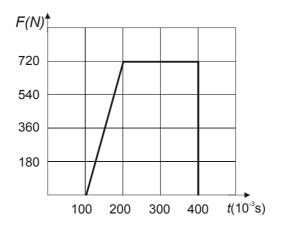
Chamado para desemperrar o parafuso, um mecânico, após verificar, numa tabela, os coeficientes de dilatação volumétrica do alumínio e do ferro, resolveu o problema.

Informações necessárias para a solução da questão:

- Coeficiente de dilatação linear do alumínio (AI): 24,0 x 10⁻⁶ °C⁻¹
- Coeficiente de dilatação linear do ferro (Fe): 11,0 x 10⁻⁶ °C⁻¹
- A variação de comprimento de um sólido, ΔL , devido a uma variação de temperatura, ΔT , é dada por

$$\Delta L = (L - L_0) = \alpha L_0 \Delta T,$$

em que L e L_0 são, respectivamente, os comprimentos final e inicial do sólido e α é o seu coeficiente de dilatação linear.

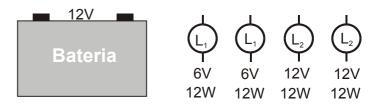

- A) Para desemperrar o parafuso considerando os coeficientes de dilatação do AI e do Fe, o mecânico esfriou ou aqueceu o conjunto? Justifique sua resposta.
- **B)** Supondo que, inicialmente, os diâmetros do parafuso e do furo do suporte eram iguais, determine a razão entre as variações dos seus diâmetros após uma variação de temperatura igual a 100 °C.

Responder na folha seguinte.

Fim do espaço	 Espaço para a resposta	
Fim do espaço	. ,	
Fim do espaço		
——————————————————————————————————————		
Fim do espaço		
——————————————————————————————————————		
Fim do espaço		
Fim do espaço		
—————Fim do espaço		
——————————————————————————————————————		
————Fim do espaço		
————— Fim do espaço ————————————————————————————————————		
Fim do espaço		
	 —— Fim do espaço —	

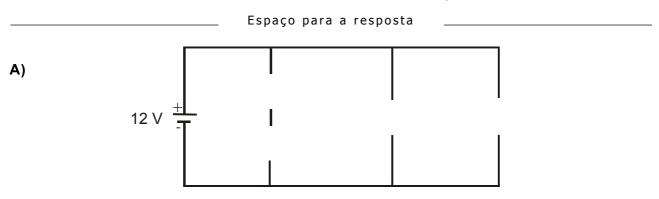
O teste de salto vertical fornece uma indicação da força muscular de um atleta. Nesse tipo de teste, o atleta salta sobre uma "plataforma de força", que registra, em função do tempo, a força exercida durante o salto.

Em um teste de força muscular, realizado por um atleta, foi registrado o gráfico abaixo.


Informações necessárias para os cálculos:

- Impulso de uma força: $I_F = F\Delta t$
- Variação da quantidade de movimento: $\Delta p = I_F$
- Quantidade de movimento ou momento linear: p = mv
- O módulo do impulso de uma força variável no tempo é numericamente igual à área sob a curva do gráfico da força em função do tempo.
- A) Calcule o impulso exercido pela "plataforma de força" sobre o atleta entre os tempos de 200×10^{-3} s e 400×10^{-3} s.
- **B)** Supondo que o atleta possua uma massa de 60 kg, determine a velocidade imediatamente após sua saída da "plataforma".

Responder na folha seguinte.


 Espaço para a resposta	
Fim do espaco	

Para montar um circuito elétrico, você dispõe de uma bateria de automóvel de 12 V e de quatro lâmpadas incandescentes, sendo duas do tipo L_1 e duas do tipo L_2 , com as especificações nominais indicadas na figura ao lado.

Com base no exposto, atenda às solicitações abaixo.

- A) Na figura inserida no espaço destinado à resposta, está representada a montagem incompleta de um circuito. Complete tal montagem inserindo corretamente as quatro lâmpadas, de forma que elas fiquem acesas em suas especificações nominais.
- B) Determine a corrente fornecida pela bateria após a montagem do circuito.

B)

Parte da energia elétrica consumida atualmente no mundo provém de usinas nucleares. Nelas, uma reação de fissão nuclear em cadeia, mantida sob controle, é usada para gerar energia térmica. Essa energia produz vapor, o qual, através de uma turbina, faz girar o rotor de um gerador elétrico.

No processo de fissão que ocorre numa usina nuclear, um átomo de urânio $\binom{235}{92}U$) absorve um nêutron $\binom{1}{0}n$), resultando no isótopo instável $\binom{236}{92}U$) com velocidade igual a zero, que, por sua vez, sofre uma reação de fissão e gera vários produtos.

A figura apresentada a seguir ilustra o processo descrito. As setas indicam as direções das velocidades dos componentes iniciais e dos respectivos produtos finais.

Componentes iniciais da reação	Isótopo instável	Produtos finais da reação
235 92 0	236 92 U	nêutron $\begin{array}{c} & & & \\ &$

Com base no exposto, atenda às solicitações abaixo.

- A) Explique como a Lei de Conservação da Carga Elétrica se verifica para essa reação de fissão.
- **B)** Explicite quais condições devem ser satisfeitas pelas massas dos produtos finais da reação, por suas respectivas velocidades e pelos vetores quantidade de movimento linear dos raios γ, para que se verifique a Lei de Conservação da Quantidade de Movimento Linear.

Responder na folha seguinte.

Fim do espaço	 Espaço para a resposta	
Fim do espaço	. ,	
Fim do espaço		
——————————————————————————————————————		
Fim do espaço		
——————————————————————————————————————		
Fim do espaço		
Fim do espaço		
—————Fim do espaço		
——————————————————————————————————————		
————Fim do espaço		
————— Fim do espaço ————————————————————————————————————		
Fim do espaço		
	 —— Fim do espaço —	