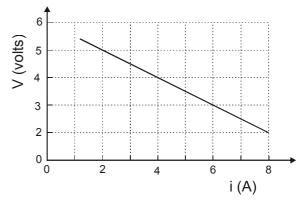
FÍSICA - QUESTÕES DE 06 A 10

06. Abaixo estão relacionados alguns fenômenos térmicos observados no cotidiano, envolvendo as substâncias ou materiais destacados em negrito:


- (1) Temos sensação de "frio" na palma da mão quando tocamos a **maçaneta metálica** de uma porta à temperatura ambiente.
- (2) Uma garrafa de vidro fechada e quase cheia de **água** pode se fragmentar após algum tempo no congelador de uma geladeira.
- (3) Temos sensação de "frio" após ser jogado álcool à temperatura ambiente em parte de nosso corpo.
- (4) Um fio fino de aço pode atravessar um bloco de gelo sem fragmentá-lo.
- (5) **Água** à temperatura acima da ambiente e bem abaixo de 100 °C no interior de um frasco fechado pode ferver quando se joga água "fria" na parede externa do recipiente.
- (6) Relógios cujos pêndulos são feitos de **invar** (liga metálica de aço e níquel) são mais precisos que relógios cujos pêndulos são feitos de aço comum.

Seguem-se as propriedades físicas das substâncias ou materiais destacados em negrito que podem justificar a ocorrência dos fenômenos listados. Utilizando a numeração estabelecida acima, faça a correlação entre cada uma das propriedades e o respectivo fenômeno por ela explicado:

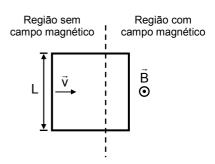
ouc	ad unia das propriedades e o respectivo fenomeno por ela explicade.	
() Ponto de ebulição dependente da pressão.	
() Ponto de fusão dependente da pressão.	
() Alta condutividade térmica.	
() Dilatação anômala.	
() Baixo coeficiente de dilatação.	
() Baixo calor latente de vaporização.	
leni ped	em de um objeto de 10 cm de comprimento é formada com nitidez em uma tela, utilizando-se uma distância focal igual a 30 cm. Sabendo-se que a lente encontra-se a 40 cm do objeto, faça o que se onda se a lente é convergente ou divergente. Justifique sua resposta.	

c) Determine o comprimento da imagem formada.

08. Um resistor variável R é ligado a uma fonte de corrente contínua, de força eletromotriz ε e resistência interna r_{int}, constantes, configurando um circuito fechado de corrente total i. Para diferentes valores de R, são medidas a corrente total do circuito i e a diferença de potencial de saída V da fonte. O gráfico ao lado apresenta algumas dessas medidas efetuadas.

Determine:

a) a força eletromotriz ϵ e a resistência interna r_{int} da fonte.


b) a potência total dissipada em todo o circuito quando i = 2 A.

c) o valor de V no caso da resistência R ser infinitamente maior que a resistência r_{int}. Justifique sua resposta.

09. Uma espira de um fio condutor quadrada, de lado L e resistência elétrica R, é introduzida, com velocidade constante \vec{v} , em uma região que possui um campo magnético uniforme e constante \vec{B} perpendicular à folha de papel, como ilustrado na figura abaixo.

Com base nessas informações, faça o que se pede:

a) Obtenha uma expressão para a corrente induzida i na espira em função de B, L, v e R.

b) Obtenha uma expressão, em função de B, L, v e R, para o módulo F da força que deve ser feita na espira para mantê-la a essa velocidade \vec{v} .

c) Indique na figura o sentido da corrente induzida i e a direção e o sentido da força referida no item anterior.

10.	Uma canoa de comprimento L e massa M_C encontra-se parada num lago de águas tranqüilas. Uma pessoa de massa M_P inicialmente em repouso desloca-se por todo o comprimento dessa embarcação, com velocidade de módulo V_P , fazendo a canoa deslocar-se com velocidade de módulo V_C . Sabendo que todas as velocidades são relativas a um observador sentado à margem do lago e que as forças de atrito envolvendo o ar e a água são desprezíveis, faça o que se pede:
	a) Responda se o centro de massa do sistema (canoa + pessoa) permanece em repouso, em relação ao observador mencionado, enquanto a pessoa se move. Justifique a sua resposta.
	b) Obtenha uma expressão para o módulo da velocidade V_{C} em função de $M_{\text{P}},M_{\text{C}}$ e $V_{\text{P}}.$
	c) Obtenha uma expressão para o módulo D do deslocamento da canoa, também relativo ao observador, quando a pessoa tiver completado a sua caminhada, em função de L, M _P e M _C .