1ª QUESTAO: (1,0 ponto)	Avaliador	Revisor	
Explique o porquê da solução de NH₄0	Ol _(aq) ser ácida.		
Cálculos e respostas:			
Soluções ácidas ou básicas podem ser obtic estão dissociados em cátions e ânions, que po hidrólise salina. No caso em questão:			
$NH_4CI_{(aq)} \longrightarrow NH_{4(aq)}^+ + CI_{(aq)}^-$			
$NH_4^+ + HOH \longrightarrow NH_4OH_{(aq)} + H^+$			
A presenca do íon H+ justifica a acidez da so	olução (pH < 7,0)		

2ª QUESTÃO: (1,5 ponto)	Avaliador	Revisor
2ª QUESTAO: (1,5 ponto)	Avaliador	Reviso

A estrutura dos compostos orgânicos começou a ser desvendada em meados do séc. XIX, com os estudos de Couper e Kekulé, referentes ao comportamento químico do carbono. Dentre as idéias propostas, três particularidades do átomo de carbono são fundamentais, sendo que uma delas é referente ao encadeamento.

Escreva a fórmula estrutural (contendo o menor número de átomos de carbono possível) de hidrocarbonetos apresentando cadeias carbônicas com as seguintes particularidades:

- a) acíclica, normal, saturada, homogênea
- b) acíclica, ramificada, insaturada etênica, homogênea
- c) aromática, mononuclear, ramificada

Cálculo	os e respostas:			
a)				
b)	cc			
c)	-C-			

3 ª	QU	JEST	ÃO:	(1,0	ponto)
------------	----	------	-----	------	--------

Ava	liador
, , , u	iiaaci

Revisor	
---------	--

Utilize os dados apresentados na tabela abaixo e calcule o DH para a reação:

$$\mathsf{N_2O}_{_{4(g)}} \ + \ 3\mathsf{CO}_{_{(g)}} \quad \longrightarrow \quad \mathsf{N_2O}_{_{(g)}} \ + \ 3\mathsf{CO}_{_{2(g)}}$$

composto	H° _f (kJ/mol)
CO _(g)	-110,0
CO _{2(g)}	- 393,0
$N_2O_{(g)}$	+ 81
N ₂ O _{4(g)}	+ 9,7

Cálculos e respostas:

 $DH_{REA} = DH^{o}f(prod) - DH^{o}f(reag)$

= [81 + 3 (-393,0) - 9,7 - 3 (-110,0)]

= - 778,0 KJ

4 ª	QUESTÃO:	(1.5	ponto	١
•	QUEUIAU.	(1,0	porito	

Revisor

Em um recipiente de aço inox com capacidade de 1,0 L foram colocados 0,500 mol de H_2 e 0,500 mol de I_2 . A mistura alcança o equilíbrio quando a temperatura atinge 430 ° C. Calcule as concentrações de H_2 , I_2 e HI na situação de equilíbrio, sabendo-se que K_C para a reação $H_{2(g)} + I_{2(g)} = 2HI_{(g)}$ é igual a 49,0 na temperatura dada.

Cálculos e respostas:

$$H_{2(g)}$$
 + $I_{2(g)}$ \longrightarrow $2HI_{(g)}$ 0,50 M 0,0 M - x + 2x

$$(0,50 - x)M$$
 $(0,50 - x)M$ $2xM$

$$K_{c} = \frac{[HI]^{2}}{[H_{2}][I_{2}]}$$

$$49.0 = \frac{(2x)^2}{(0.50 - x)^2}$$

$$\sqrt{49} = \frac{(2x)}{0.50 - x}$$

$$[H_2] = [I_2] = 0.50 - 0.39 = 0.11M$$

$$[HI] = 2 \times 0.39 = 0.78 \text{ M}$$

Dos produtos obtidos no refino do petróleo, um dos mais importantes é a gasolina. Embora contenha mistura de hidrocarbonetos desde o C_6 até o C_{10} , na gasolina predominam os hidrocarbonetos C_7 (heptano) e C_8 (octano). Com relação a este último:

- a) escreva a equação química balanceada, representativa da combustão completa de uma molécula de octano;
- **b)** determine a massa, em grama, de CO_{2(q)} produzida na combustão completa de 1,30 g de octano.

Cálculos e respostas:

a)
$$C_8H_{18}(\ell) + \frac{25}{2}O_{2(g)} \longrightarrow 8CO_{2(g)} + 9H_2O_{(g)}$$

$$x = 4.0 g$$

			~		
6 <u>a</u>	QL	JES	TAO:	(1.5)	ponto

Avaliador

Revisor

Quantos gramas de cobre são depositados no cátodo de uma célula eletrolítica se uma corrente de 2,0 A é passada através de uma solução de $CuSO_4$ durante um período de 20,0 minutos?

Cálculos e respostas:

1,0 min — 60 seg 20,0 min — x = 1200 seg

número de Coulombs = i.t

= 2,0 A . 1200 seg = 2400 Coulombs

1,0 F — 96500 Coulombs

y ——2400 Coulombs

$$y = 0.0249 F$$

temos que:

$$\frac{0,0249 \text{ F x } 63,5 \text{ g}}{2\text{F}} = 0,791 \text{ g}$$

7 ª	QUESTÃO: (1,0 ponto)	Avaliador		Revisor	
	Sabe-se que os átomos A e B apresentam a:	s seguintes	configurações	s eletrônicas:	
	Átomo A = $1s^2/2s^2 2p^6/3s^2 3p^6/4s^2$	2			
	Átomo B = $1s^2/2s^22p^5$				
	Com base nas configurações, informe:				
a) b) c) d)	o átomo de maior raio atômico; o átomo que tende a formar íon monovalente; a fórmula do composto entre A e B; o átomo de maior eletropositividade.				
Cá	lculos e respostas:				
a)	Átomo A				
b)	Átomo B				
	AB ₂				
d)	Átomo A				

Avaliador

Revisor

A seguinte mistura foi preparada em laboratório: 300,0 mL de HCl 0,40 M mais 200,0 mL de NaOH 0,60 M. Considerando a reação completa, informe, por meio de cálculos, a molaridade do sal formado.

Cálculos e respostas:

$$nHCI = 0,40 \text{ mols.L}^{-1}$$
 x 0,30 L = 0,12 mols

$$nNaOH = 0,60 \text{ mols.L}^{-1}$$
 \times 0,20 L = 0,12 mols

HCI + NaOH
$$\Rightarrow$$
 NaCI + HO
1:1 1:1

$$M_{NaCl} = \frac{0.12 \text{ mols}}{0.5 \text{ L}} = 0.24 \text{ M}$$