QUÍMIC

61 b

A limpeza de pisos de mármore normalmente é feita com solução de ácido clorídrico comercial (ácido muriático).

Essa solução ácida ataca o mármore, desprendendo gás carbônico, segundo a reação descrita pela equa-

 $CaCO_3(s) + 2HCI(aq) \rightarrow CaCI_2(aq) + H_2O(I) + CO_2(g)$ Considerando a massa molar do CaCO₃ = 100 g/mol, o volume molar de 1 mol de CO₂ nas CNTP = 22,4 L e supondo que um operário, em cada limpeza de um piso de mármore, provoque a reação de 7,5g de carbonato de cálcio, o volume de gás carbônico formado nas CNTP será de

a) 3,36L.

b) 1,68L.

c) 0,84L.

e) 0,21L. **Resolução** $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$

Cálculo do volume de gás carbônico nas CNTP: $x = \frac{7.5 \cdot 22.4}{100}$ (L) = 1.68L de CO_2

62 b

Ao se adicionar sódio metálico em água, ocorre reação deste com a água, com liberação de gás hidrogênio (H₂), conforme representada pela equação:

$$Na^{0}(s) + H_{2}O(l) \rightarrow NaOH(aq) + 1/2H_{2}(g)$$

- O fenômeno descrito pode ser classificado como
- a) físico, porque ocorre a dissolução do sódio metálico.
- b) químico, porque ocorre a formação de íons Na⁺ em solução e desprendimento de gás hidrogênio.
- c) físico, porque evaporando-se a água, pode-se recuperar o sódio metálico.
- d) físico e químico, porque alterou a estrutura do sódio metálico e produziu hidrogênio a partir da água líqui-
- e) físico, porque não alterou as propriedades físicas do sódio metálico.

Resolução

O fenômeno descrito pode ser classificado como químico, pois ocorre a formação de íons Na+ devido à oxidação do metal sódio e desprendimento de gás hidrogênio. Em um fenômeno químico temos a formação de novas substâncias químicas.

 $Na^{0}(s) + H_{2}O(l) \rightarrow Na^{+}(aq) + OH^{-}(aq) + 1/2H_{2}(g)$

A aspirina (ácido acetilsalicílico) pode ser preparada pela reação do ácido salicílico com o anidrido acético, segundo a reação representada pela equação:

 $2C_7H_6O_3$ (aq) + $C_4H_6O_3(l) \rightarrow 2C_9H_8O_4(s) + H_2O(l)$ ácido salicílico anidrido acético aspirina Considerando-se que a reação entre 138 g de ácido salicílico com 25,5 g de anidrido acético ocorre com rendimento de 60%, e sabendo-se que as massas molares desses compostos são: $C_7H_6O_3 = 138 \text{ g/mol},$

 $C_4H_6O_3 = 102 \text{ g/mol}, C_9H_8O_4 = 180 \text{ g/mol}, \text{ a massa de}$ aspirina obtida será igual a

- a) 180g.
- b) 108q.
- e) 45g. d) 54q.

Resolução

Dada a equação química:

$$2C_7H_6O_3$$
 (aq) + $C_4H_6O_3(l) \rightarrow 2C_9H_8O_4(s) + H_2O(l)$

Cálculo do reagente em excesso:

2 mol de
$$C_7H_6O_3$$
 ----- 1 mol de $C_4H_6O_3$

$$\psi$$
8g de $C_7H_6O_3$ ----- 102g de $C_4H_6O_3$

2.138g de
$$C_7H_6O_3$$
 ------ 102g de $C_4H_6O_3$
138g de $C_7H_6O_3$ ----- x

$$x = \frac{138 \cdot 102}{2 \cdot 138} (g) = 51g \text{ de } C_4 H_6 O_3$$

O ácido salicílico está em excesso.

Cálculo da massa de aspirina obtida se o rendimento for de 100%:

1 mol de
$$C_4H_6O_3$$
 ------ 2 mol de $C_9H_8O_4$

102g de
$$C_4H_6O_3$$
 ------ 2 . 180g de $C_9H_8O_4$

$$25,5g \text{ de } C_4H_6O_3$$
 ----- y

$$y = \frac{25.5 \cdot 2 \cdot 180}{102}$$
 (g) = 90.0g de $C_9 H_8 O_4$

Cálculo da massa de aspirina para o rendimento de 60%:

$$90.0g ----- 100\%$$

$$z ----- 60\%$$

$$z = \frac{60.90.0}{100} (g) = 54.0g$$

Comparando-se os pontos de ebulição do éter dimetílico ($\rm H_3C-O-CH_3$) com o ponto de ebulição do álcool etílico ($\rm H_3C-CH_2-OH$), o éter dimetílico terá ponto de ebulição

- a) maior, porque apresenta forças de van der Waals entre suas moléculas.
- b) maior, porque apresenta ligações de hidrogênio entre suas moléculas.
- c) menor, porque apresenta forças de van der Waals entre suas moléculas.
- d) menor, porque apresenta ligações de hidrogênio entre suas moléculas.
- e) igual ao do álcool etílico, porque as duas substâncias têm a mesma massa molar.

Resolução

O éter dimetílico estabelece entre suas moléculas forças de van der Waals.

O álcool etílico estabelece entre suas moléculas ligações de hidrogênio (pontes de hidrogênio).

Como as forças de van der Waals são mais fracas que as ligações de hidrogênio, o ponto de ebulição do éter é menor que o do álcool.

A quantidade máxima de soluto que pode ser dissolvida numa quantidade padrão de solvente é denominada Coeficiente de Solubilidade. Os valores dos Coeficientes de Solubilidade do nitrato de potássio (KNO₃) em função da temperatura são mostrados na tabela.

Temperatura	Coeficiente de Solubilidade				
(°C)	(g de KNO ₃ por 100g de H ₃ O)				
(0)	3 3				
0	13,3				
10	20,9				
20	31,6				
30	45,8				
40	63,9				
50	85,5				
60	110,0				
70	138,0				
80	169,0				
90	202,0				
100	246,0				

Considerando-se os dados disponíveis na tabela, a quantidade mínima de água (H₂O), a 30°C, necessária para dissolver totalmente 6,87g de KNO₃ será de

a) 15g.

b) 10q.

c) 7,5g. d) 3g. e) 1,5g.

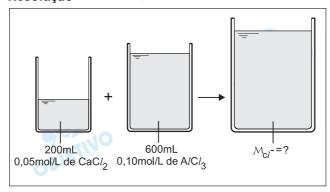
Resolução

Pelos dados da tabela, verifica-se que a 30°C dissolvem-se 45,8g de KNO_3 em 100g de H_2O .

 $45,8g \text{ de KNO}_3$ ----- $100g \text{ de H}_2\text{O}$ $6,87g \text{ de KNO}_3$ ----- x

 $x = 15g de H_2O$

Serão necessários no mínimo 15g de H₂O para dissolver 6,87g de KNO₃.



Em um laboratório, foram misturados 200 mL de solução 0,05 mol/L de cloreto de cálcio ($CaCl_2$) com 600 mL de solução 0,10 mol/L de cloreto de alumínio ($AlCl_3$), ambas aquosas. Considerando o grau de dissociação desses sais igual a 100% e o volume final igual à soma dos volumes de cada solução, a concentração, em quantidade de matéria (mol/L), dos íons cloreto ($Cl\Gamma$) na solução resultante será de

a) 0,25. b) 0,20. c) 0,15. d) 0,10. e) 0,05.

Resolução

$$y = 0.02 \text{ mol de } Cl^-$$

$$y' = 0.18 \text{ mol de } Cl^{-1}$$

Cálculo da quantidade de matéria de Cl⁻ na solução resultante.

$$n = (0.02 + 0.18) \text{ mol} = 0.20 \text{ mol de Cl}^{-1}$$

Volume da solução final V = 200mL + 600mL = 800mL

Cálculo da concentração final de Cl⁻ em mol/L 0,20 mol ----- 0,8L

OBJETIVO UNESP (Prova de Conhecimentos Gerais)
Julho/2004

 $\begin{array}{cccc}
x & & ---- & 1L \\
x = 0.25 & mol
\end{array}$

 $M = 0.25 \text{ mol/L de fon } Cl^-$

OBJETT

OBJETIVO

OBJETIVO

OBJETIVO

OBJETIVO

OBJETIVO

OBJETIVO

OBJETNO

OBJETIVO

OBJETTVO

são misturas hete

Soluções ou dispersões coloidais são misturas heterogêneas onde a fase dispersa é denominada disperso ou colóide. Quando uma solução coloidal, constituída por colóides liófilos, é submetida a um campo elétrico, é correto afirmar que

- a) as partículas coloidais não conduzem corrente elétrica.
- b) as partículas coloidais irão precipitar.
- c) as partículas coloidais não irão migrar para nenhum dos pólos.
- d) todas as partículas coloidais irão migrar para o mesmo pólo.
- e) ocorre a eliminação da camada de solvatação das partículas coloidais.

Resolução

As partículas de um sistema coloidal apresentam carga elétrica positiva ou negativa. Os colóides liófilos (amigos do solvente) apresentam uma camada de solvatação.

Ao ser submetido a um campo elétrico, as micelas irão migrar para o eletrodo de carga contrária (cataforese ou anaforese). Não ocorre precipitação devido à camada de solvatação.

Para a reação genérica: $A + 2B \rightarrow 4C$, com as concentrações de A e B iguais a 1,7 mol/L e 3,0 mol/L, respectivamente, obtiveram-se em laboratório os dados mostrados na tabela.

[C] (mol/L)	0,0	0,6	0,9	1,0	1,1
Tempo (h)	0,0	1,0	2,0	3,0	4,0

Com base na tabela, a velocidade média de consumo do reagente A no intervalo de 2,0h a 4,0h, expresso em mol L⁻¹ h⁻¹, será igual a

- a) 0,250.
- b) 0,150.
- c) 0,075.

- d) 0,050.
- e) 0.025.

Resolução

Cálculo da quantidade de matéria de C por litro formado no intervalo de 2,0h a 4,0h:

$$\Delta[C]_{2,0h \to 4,0h} = (1, 1 - 0, 9) \text{ mol/L} = 0.2 \text{ mol/L}$$

Cálculo da velocidade de consumo de A no intervalo de 2,0h a 4,0h:

$$V = \frac{\Delta[A]}{\Delta t} = \frac{0.05 \text{ mol/L}}{2.0h} = 0.025 \text{ mol L}^{-1} \text{ h}^{-1}$$

Nas obturações dentárias, os dentistas não podem colocar em seus pacientes obturações de ouro e de amálgama muito próximas, porque os metais que constituem a amálgama (uma liga de prata, zinco, estanho, cobre e mercúrio) são todos mais eletropositivos que o ouro e acabariam transferindo elétrons para esse metal através da saliva, podendo levar à necrose da polpa dentária. Das semi-reações dos metais que constituem a amálgama, a que apresenta o metal mais reativo é

a)
$$Ag(s) \rightarrow Ag^{+}(aq) + 1e^{-}$$
 $E^{0} = -0.80 \text{ V}$

b)
$$Sn(s) \rightarrow Sn^{2+}(aq) + 2e^{-}$$
 $E^{0} = + 0.14 \text{ V}$

c)
$$Hg(s) \rightarrow Hg^{2+}(aq) + 2e^{-}$$
 $E^{0} = -0.85 \text{ V}$

d)
$$Zn(s) \rightarrow Zn^{2+}(aq) + 2e^{-}$$
 $E^{0} = + 0.76 \text{ V}$

e)
$$Cu(s) \rightarrow Cu^{2+}(aq) + 2e^{-}$$
 $E^{0} = -0.34 \text{ V}$

Resolução

O metal mais reativo que participa do amálgama é o zinco, pois tem maior potencial de oxidação, isto é, maior tendência em perder elétrons.

A formação da melanina, pigmento que dá cor à pele, envolve em uma de suas etapas a oxidação da tirosina, conforme a reação representada pela equação:

Na reação, a tirosina, composto que sofre oxidação, constitui

- a) uma amina.
- b) um ácido carboxílico.
- c) um aminoácido.
- d) uma amida.
- e) um ceto-álcool.

Resolução

Pelo exposto, a tirosina é um aminoácido.

71 b

Na reação de adição de água em alcinos (reação de hidratação), apenas o etino (acetileno) produz um aldeído (etanal); os demais alcinos produzem cetona em decorrência da regra de Markownikoff. Das reações relacionadas, a que representa a hidratação do etino produzindo etanal é

a)
$$H_3C - C \equiv C - H + H_2O \xrightarrow{H_2SO_4/HgSO_4}$$

$$\rightarrow H_3C - C = CH_2 \rightarrow H_3C - C - CH_3$$
OH
enol (instavel)

b)
$$H - C \equiv C - H + H_2O \xrightarrow{H_2SO_4/HgSO_4}$$

$$\rightarrow H - C = C - H \rightarrow H_3C - C = O$$

$$\downarrow H \quad OH \quad H$$
enol (instável)

c)
$$H - C \equiv C + H_2O \xrightarrow{H_2SO_4/HgSO_4} H_3C - CH_2 - OH$$

d)
$$H_3C - C \equiv C - H + H_2O \xrightarrow{H_2SO_4/HgSO_4}$$

 $\rightarrow H_3C - CH_2 - C \equiv O$
 \downarrow
 \downarrow
 \downarrow
 \downarrow

e)
$$H - C \equiv C - H + H_2O \xrightarrow{H_2SO_4/HgSO_4} \rightarrow H_3C - COOH$$

Resolução

A equação química do processo:

$$H_2SO_4/HgSO_4$$

$$H - C \equiv C - H + H_2O \xrightarrow{\qquad \qquad }$$

$$\rightarrow H - C = C - H \rightleftharpoons H_3C - C = O$$

$$\begin{vmatrix} & & & & & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & \\ & & & \\ & \\ &$$

72 e

Uma das formas de classificação dos polímeros sintéticos é quanto à reação de preparação. Os chamados polímeros de adição ou homopolímeros são obtidos pela polimerização de moléculas pequenas (monômeros). Por exemplo, a obtenção do polietileno ocorre por polimerização do etileno na presença de catalisador e sob pressão e temperatura determinadas, conforme a

$$\begin{array}{l} {\rm nCH_2 = CH_2 \overset{\rm P, \ T, \ Cat.}{\longrightarrow} (-CH_2 - CH_2 -) n} \\ {\rm etileno} \end{array}$$

Das estruturas monoméricas relacionadas, a que representa o monômero do cloreto de polivinila (PVC) é

$$\begin{array}{c|c} \text{b)} - \mathbf{C} - \mathbf{C} - \\ & \mathbf{I} & \mathbf{I} \\ & \mathbf{F}_2 & \mathbf{F}_2 \end{array}$$

$$\begin{array}{c} \text{c)} - \text{H}_2 \text{C} - \text{C} = \text{CH} - \text{CH}_2 - \\ | \\ \text{CH}_3 \end{array}$$

d) —
$$H_2C$$
 — CH = CH — CH_2 —

d)
$$- H_2C - CH = CH - CH_2 - CH_2$$

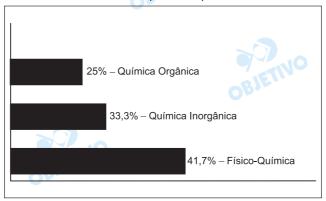
e) $- H_2C - CH - CH_2$

Resolução

A reação de polimerização que representa a formação do cloreto de polivinila é dada pela equação química:

Houve um engano da banca examinadora, pois o monômero do polímero PVC é o cloreto de vinila, cuja fórmula molecular é:

$$H_2C = CH$$



Comentário

A prova de Química apresentou questões de nível médio. As questões 63 e 66 foram trabalhosas, envolvendo vários cálculos químicos. Na questão 67, o termo solução coloidal não é adequado e sim dispersão coloidal. Na questão 72, houve confusão entre monômero e a unidade que se repete.

