O lançamento descontrolado de dióxido de enxofre $(SO_2(g))$ na atmosfera é uma das principais causas da acidez da água da chuva nos grandes centros urbanos. Esse gás, na presença de O_2 e água da chuva, produz $H_2SO_4(aq)$. Um dos efeitos causados pelo $H_2SO_4(aq)$ é a transformação do mármore, $CaCO_3(s)$, em gesso, $CaSO_4(s)$.

- a) Escreva as equações químicas das reações que ocorrem com o $SO_2(g)$ na atmosfera formando $H_2SO_4(aq)$.
- b) Considerando as massas molares do $H_2SO_4 = 98$ g/mol e do $CaSO_4 = 136$ g/mol, calcule a quantidade máxima de $CaSO_4$ que pode ser formada a partir de 245kg de H_2SO_4 puro.

Resolução

a)
$$2 SO_2(g) + 1 O_2(g) \longrightarrow 2 SO_3(g)$$

 $SO_3(g) + H_2O(l) \longrightarrow H_2SO_4(aq)$

b)
$$CaCO_3(s) + H_2SO_4(l) \rightarrow CaSO_4(s) + H_2O(l) + CO_2(g)$$

1 mol de
$$H_2SO_4$$
 ------ 1 mol de $CaSO_4$ \downarrow 98g ----- 136g 245kg ----- χ

$$x = 340kg \text{ de } CaSO_4$$

Para neutralizar 100 mL de solução 1,60 mol/L de ácido sulfúrico ($\rm H_2SO_4$), um laboratorista adicionou 400 mL de solução 1,00 mol/L de hidróxido de sódio (NaOH). Considerando o volume da solução final igual a 500 mL, determine:

- a) utilizando cálculos, se a solução final será ácida, básica ou neutra;
- b) a concentração em quantidade de matéria (mol/L) do sal formado na solução final.

Resolução

a) Cálculo da quantidade de matéria do H₂SO₄ na solução:

$$1L - 1,60 \text{ mol}$$

 $0,1L - x$
 $x = 0,160 \text{ mol}$

Cálculo da quantidade de matéria do NaOH na solução:

A equação química do processo:

$$H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$$

1 mol 2 mol 1 mol 0,160 mol 0,320 mol 0,160 mol

Excesso de NaOH: 0,400 mol - 0,320 mol = 0,08 mol

A solução é básica.

b)
$$[Na_2SO_4] = \frac{0.160 \text{ mol}}{0.500L}$$

 $[Na_2SO_4] = 0.320 \text{ mol/L}$

O leite de magnésia, utilizado para combater a acidez estomacal, é uma suspensão de hidróxido de magnésio $(Mg(OH)_2)$ em água. O hidróxido de magnésio é um composto pouco solúvel em água, que apresenta a constante do Produto de Solubilidade (K_{PS}) , a 25°C, igual a 3,2 x 10^{-11} .

- a) Calcule a solubilidade do Mg(OH)₂ em água pura, expressa em mol/L. Considere desprezível a concentração de íons OH⁻ proveniente da dissociação da água e K_{PS} = [Mg²⁺] x [OH⁻]².
- b) Explique, utilizando cálculos, o que acontece com a solubilidade do Mg(OH)₂ em solução que apresente pH = 12. Admita que a concentração de íons OH⁻ da dissociação do Mg(OH)₂ seja desprezível nesse valor de pH.

Resolução

a) $Mg(OH)_2(s) \gtrsim Mg^{2+}(aq) + 2OH^{-}(aq)$ x mol/L x mol/L 2x mol/L

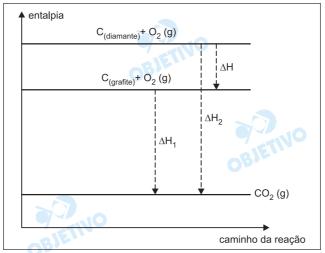
$$K_{PS} = [Mg^{2+}] \cdot [OH^{-}]^{2} = x \cdot (2x)^{2} = 4x^{3}$$

 $4x^{3} = 3, 2 \cdot 10^{-11}$
 $4x^{3} = 32 \cdot 10^{-12}$
 $x^{3} = 8 \cdot 10^{-12}$
 $x = \sqrt[3]{8 \cdot 10^{-12}} = 2 \cdot 10^{-4}$

A solubilidade do $Mg(OH)_2$ em água pura é $2 \cdot 10^{-4}$ mol/L

b) Em uma solução de pH = 12, o meio é fortemente básico. De acordo com o Princípio de Le Chatelier, o aumento da concentração de OH⁻ desloca o equilíbrio "para a esquerda", isto é, a solubilidade diminui.

$$\leftarrow \uparrow$$


$$Mg(OH)_2(s) \rightleftharpoons Mg^{2+}(aq) + 2OH^{-}(aq)$$

OBJETIVO

Entre as formas alotrópicas de um mesmo elemento, há aquela mais estável e, portanto, menos energética, e também a menos estável, ou mais energética. O gráfico, de escala arbitrária, representa as entalpias (ΔH) do diamante e grafite sólidos, e do CO_2 e O_2 gasosos.

- a) Sabendo-se que os valores de ΔH_1 e ΔH_2 são iguais a -393 e -395 kJ, respectivamente, calcule a entalpia (ΔH) da reação: C(grafite) \rightarrow C(diamante). Indique se a reação é exotérmica ou endotérmica.
- b) Considerando-se a massa molar do C = 12 g/mol, calcule a quantidade de energia, em kJ, necessária para transformar 240g de C(grafite) em C(diamante).

Resolução

a) Utilizando o gráfico fornecido, temos:

$$\Delta H_2 = \Delta H_1 + \Delta H$$

$$-395kJ=-393kJ+\Delta H$$

$$\Delta H = -2kJ$$

$$C(diamante) \rightarrow C(grafite)$$
 $\Delta H = -2kJ$

$$C(grafite) \rightarrow C(diamante)$$
 $\Delta H = + 2kJ$

Portanto, a transformação do grafite em diamante é endotérmica.

b) $C(grafite) \rightarrow C(diamante)$ $\Delta H = + 2kJ$

$$12g - \frac{absorvem}{240g} 2kJ$$

$$240g - \dots - x$$

$$x = 40kJ$$

OBJETIVO

O composto orgânico 2,3-butanodiol apresenta dois carbonos assimétricos, cada um deles tendo substituintes exatamente iguais. Cada um desses carbonos assimétricos pode provocar o desvio da luz polarizada de um ângulo α para a direita (composto dextrógiro) ou para a esquerda (composto levógiro). Uma outra possibilidade é que um dos carbonos assimétricos desvie a luz polarizada de um ângulo α para a direita, enquanto o outro desvie do mesmo ângulo α para a esquerda. Nesse caso, o desvio final será nulo e o composto opticamente inativo (meso). Considerando as informações fornecidas no texto, escreva:

- a) a fórmula estrutural do 2,3-butanodiol e indique os dois carbonos assimétricos que apresentam substituintes iguais na estrutura desse composto;
- b) a fórmula estrutural dos três isômeros ópticos do 2,3-butanodiol (dextrógiro, levógiro e meso).

Resolução

a)
$$H - C - C^* - C^* - C - H$$

C*: carbono assimétrico

$$CH_3 \qquad CH_3$$
b) $H - C - OH \qquad HO - C - H$

$$HO - C - H \qquad H - C - OH$$

$$CH_3 \qquad CH_3$$

$$dextrogiro \qquad levogiro$$

$$ou \qquad ou$$

$$levogiro \qquad dextrogiro$$

$$\begin{array}{c} CH_3 \\ H-C-OH \\ H-C-OH \\ CH_3 \end{array}$$

meso (molécula simétrica)

OBJETIVO

Cetonas são compostos orgânicos que possuem grupo carbonila ligado a outros dois grupos orgânicos. A cetona mais comum é a dimetil-cetona (nome usual) ou acetona (nome comercial), que é um líquido incolor, inflamável e de cheiro agradável. Antigamente, a dimetil-cetona era preparada industrialmente, por hidratação do propino na presença de ácido sulfúrico ($\rm H_2SO_4$) e sulfato de mercúrio (II) ($\rm HgSO_4$). A dimetil-cetona, atualmente, é produzida industrialmente a partir da oxidação do cumeno (isopropilbenzeno), processo industrial moderno, que produz também fenol, composto orgânico de grande importância industrial.

Com base nas informações do texto, escreva:

- a) o nome oficial da dimetil-cetona (IUPAC) e sua fórmula estrutural;
- b) a equação química da reação de obtenção da dimetilcetona, a partir da oxidação do cumeno (isopropilbenzeno) pelo oxigênio do ar.

Resolução

a)
$$H = C = C = C = H$$

nome oficial: propanona

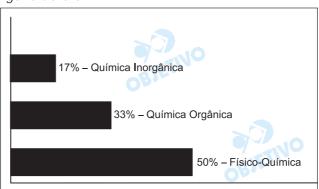
b) A equação química do processo:

$$C - CH_3 + O_2 \rightarrow CH_3$$

$$CH_3 \qquad O$$

$$O \qquad | | |$$

$$O \qquad | | CH_3 \qquad O$$


$$O \qquad | | CH_3 \qquad O$$

Comentário

Podemos classificar a prova de Química com um grau de dificuldade médio para difícil. As questões foram bem elaboradas e não apresentaram falta de rigor e clareza.

OBJETIVO

OBJETIVO

OBJETIVO

OBJETIVO

