Questão 1 – Seja $P(x) = ax^4 + bx^3 + cx^2 + 3dx + e$ um polinômio com coeficientes reais em que b = -1 e uma das raízes é x = -1. Sabe-se que a < b < c < d < e formam uma progressão aritmética crescente.

a) Determine a razão dessa progressão aritmética e os coeficientes do polinômio P(x).

Sabe-se que a < b < c < d < e formam uma progressão aritmética crescente (PA crescente). Seja r a razão dessa PA. Escrevendo essa PA em função de b e r, temos

$$a = b - r < b < c = b + r < d = b + 2r < e = b + 3r$$
.

Usando o fato que x = -1 é raiz do polinômio $P(x) = ax^4 + bx^3 + cx^2 + 3dx + e$, obtemos:

$$0 = P(-1) = a(-1)^4 + b(-1)^3 + c(-1)^2 + 3d(-1) + e \implies a - b + c - 3d + e = 0.$$

Segue que

$$(b-r)-b+(b+r)-3(b+2r)+(b+3r)=0 \implies -b-3r=0 \implies r=-\frac{b}{3}$$

Como b = -1, temos $r = \frac{1}{3}$.

Determinemos agora os coeficientes a, b, c, 3d, e, do polinômio $P(x) = ax^4 + bx^3 + cx^2 + 3dx + e$:

$$a = b - r = -1 - \frac{1}{3} = -\frac{4}{3}$$
, $b = -1$, $c = -1 + \frac{1}{3} = -\frac{2}{3}$, $3d = 3(-1 + \frac{2}{3}) = -1$, $e = -1 + \frac{3}{3} = 0$.

Portanto, $P(x) = -\frac{4}{3}x^4 - 1x^3 - \frac{2}{3}x^2 - 1x$.

b) Encontre as demais raízes do polinômio P(x).

Note que o polinômio P(x) pode ser reescrito da seguinte forma:

$$P(x) = -\frac{1}{3}x(4x^3 + 3x^2 + 2x + 3).$$

Note que x=0 é raiz de P(x). Como x=-1 é raiz do polinômio P(x), temos que também é raiz do polinômio $Q(x)=4x^3+3x^2+2x+3$. Assim dividindo o polinômio Q(x) por x+1 obtemos:

Divisão de polinômio

ou

Dispositivo Prático de Briot-Ruffini

Resto da divisão

Logo, $P(x) = -\frac{1}{3}x \cdot Q(x) = -\frac{1}{3}x(4x^2 - x + 3)(x + 1)$. As raízes de $4x^2 - x + 3$ são:

$$x = \frac{1 \pm \sqrt{1 - 48}}{8} \quad \Rightarrow \quad x = \frac{1}{8} \pm \frac{\sqrt{47}}{8}i.$$

Portanto, as raízes do polinômio P(x) são: -1, 0, $\frac{1}{8} - \frac{\sqrt{47}}{8}i$ e $\frac{1}{8} + \frac{\sqrt{47}}{8}i$.

Questão 2 – No plano cartesiano, considere os pontos A(-1,2) e B(3,4).

a) Encontre a equação da reta r que passa por A e forma com o eixo das abscissas um ângulo de 135° , medido do eixo para a reta no sentido anti-horário.

A equação da reta r que passa pelo ponto $A(x_A,y_A)$ e tem inclinação de θ é dada por, $y-y_A=m_r(x-x_A)$, onde $m_r=tg(\theta)$ é o coeficiente angular da reta r.

Como A(-1,2) e $\theta = 135^{\circ}$, temos $m_r = tg(135^{\circ}) = -1$ e

$$y-(2) = -1(x-(-1)) \implies y-2 = -1(x+1)) \implies y = -x+1.$$

Equação da reta $r: y_r = -x+1$.

b) Seja s a reta que passa por B e é perpendicular à reta r. Encontre as coordenadas do ponto P, determinado pela intersecção das retas r e s.

Sejam m_r e m_s os coeficientes angulares das retas r e s, respectivamente. Como as retas r e s são perpendiculares, temos m_r . $m_s = -1$. Pelo item **a**, sabemos que $m_r = -1$, logo

$$m_s = \frac{-1}{m_r} \implies m_s = \frac{-1}{-1} \implies m_s = 1.$$

Como a reta s passa pelo ponto B(3,4), sua equação é dada por

$$y-(4) = 1(x-(3)) \implies y-4 = x-3 \implies y = x+1$$
.

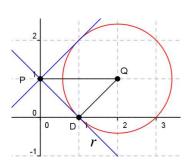
Então, a equação da reta s é dada por: $y_s = x + 1$.

Determinemos agora o ponto P dado pela intersecção das retas r e s $\begin{cases} y_r = -x+1 \\ y_s = x+1 \end{cases}$

Resolvendo o sistema, obtemos $x+1=-x+1 \Rightarrow 2x=0 \Rightarrow x=0$. Logo P(0,1).

c) Determine a equação da circunferência que possui centro no ponto Q(2,1) e tangencia as retas $r \in S$.

Seja D o ponto de tangência da circunferência com a reta r. Logo o comprimento do segmento QD é o raio R da circunferência, isto é, R=QD. Como D é o ponto de tangência da circunferência com a reta r, temos que o ângulo $P\widehat{D}Q$ é retângulo em D, ou seja, $P\widehat{D}Q=90^\circ$. A reta que passa por P e Q é paralela ao eixo dos x, logo $D\widehat{P}Q=P\widehat{Q}D=45^\circ$ e o triângulo retângulo DPQ é isósceles de lado QD e hipotenusa PQ=2. Assim,



$$R^2 + R^2 = 2^2$$
 \Rightarrow $2R^2 = 4$ \Rightarrow $R = \sqrt{2}$.

A equação de uma circunferência que possui centro no ponto (x_o,y_o) e raio R é dada por

$$(x-x_o)^2 + (y-y_o)^2 = R^2$$
.

Portanto, a equação da circunferência que possui centro no ponto Q(2,1) é:

$$(x-2)^2 + (y-1)^2 = 2$$

Outra resolução possível:

Como a circunferência tangencia a reta r, temos que o raio, R, da circunferência é dado pela distância do centro Q(2,1) à reta r: y+x-1=0 (mesmos argumentos podem ser usados com a reta s). Assim,

$$R = d_{Q,r} = \frac{|1(2) + 1(1) - 1|}{\sqrt{1^2 + 1^2}} \implies R = \frac{|2|}{\sqrt{2}} \implies R = \sqrt{2}$$
.

Logo, a equação da circunferência que possui centro no ponto Q(2,1) e tangencia as retas r e s é:

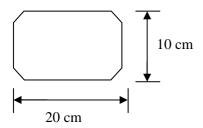
$$(x-2)^2 + (y-1)^2 = (\sqrt{2})^2$$
,

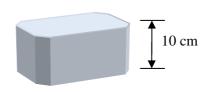
ou seja,

$$(x-2)^2 + (y-1)^2 = 2$$

Observação: distância do ponto $Q(x_Q, y_Q)$ a reta r: ax + by + c = 0: $d_{Q,r} = \frac{|a x_Q + b y_Q - c|}{\sqrt{a^2 + b^2}}$.

Questão 3 – Uma empresa de sorvete utiliza como embalagem um prisma reto, cuja altura mede $10\,\mathrm{cm}$ e cuja base é dada conforme descrição a seguir: de um retângulo de dimensões $20\,\mathrm{cm}$ por $10\,\mathrm{cm}$, extrai-se em cada um dos quatro vértices um triângulo retângulo isósceles de catetos de medida 1cm.





a) Calcule o volume da embalagem.

Seja V o volume da embalagem, isto é, $V = A \times h$, onde :

h =altura da embalagem,

A = área da base desta embalagem.

Temos que, cada um dos quatro triângulos extraídos tem área igual a $\frac{1}{2}$ cm². Logo

$$A = (20 \times 10 - 4\frac{1}{2}) = 198 \text{ cm}^2$$
.

Assim, o volume desta embalagem é dado por

$$V = 198 \times 10 = 1980 \text{ cm}^3$$
.

b) Sabendo que o volume ocupado por esse sorvete aumenta em $\frac{1}{5}$ (um quinto) quando passa do estado líquido para o estado sólido, qual deve ser o volume máximo ocupado por esse sorvete no estado líquido, nessa embalagem, para que, ao congelar, o sorvete não transborde?

Sejam

V = volume da embalagem, isto é $V = A \times h$.

 V_0 = o volume que deve ser colocado na embalagem, para que, ao congelar, o sorvete não transborde.

Então

$$V_0 + \frac{1}{5}V_0 = V \implies \frac{6}{5}V_0 = V \implies V_0 = \frac{5}{6}V$$
.

Portanto,

$$V_0 = \frac{5}{6} \times 1980 = 1650 \,\mathrm{cm}^3$$
.

Questão 4 - Sejam $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ funções definidas por f(x) = x - 14 e $g(x) = -x^2 + 6x - 8$, respectivamente.

a) Determine o conjunto dos valores de x tais que f(x) > g(x).

Defina

$$h(x) = f(x) - g(x) = x^2 - 5x - 6$$
.

Neste caso, $f(x) > g(x) \Leftrightarrow h(x) > 0$.

Note que a representação gráfica da função h é uma parábola com concavidade voltada para cima, cujas raízes são dadas por:

$$x = \frac{5 \pm \sqrt{49}}{2} \implies x_1 = -1 \text{ e } x_2 = 6.$$

Logo h(x) > 0 para todos os valores de x fora do intervalo compreendido entre as raízes x_1 e x_2 . Assim o conjunto procurado é,

$$X = \{x \in \mathbb{R}; h(x) > 0\} = \{x \in \mathbb{R}; f(x) > g(x)\} = \mathbb{R} - [-1, 6] =]-\infty, -1[\cup]6, +\infty[$$

b) Determine o menor número real κ tal que $f(x) + \kappa \ge g(x)$ para todo $x \in \mathbb{R}$.

Defina

$$h_k(x) = f(x) + k - g(x) = x^2 - 5x - 6 + k$$

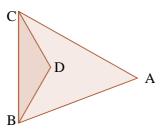
Neste caso, $f(x) + k \ge g(x) \Leftrightarrow h_k(x) \ge 0$.

Note que a representação gráfica da função h_k é uma parábola com concavidade voltada para cima, logo $h_k(x) \geq 0$ para todo $x \in \mathbb{R}$, quando $\Delta \leq 0$, ou seja, quando

$$\Delta = 25 + 24 - 4k \le 0 \implies k \ge \frac{49}{4}.$$

Como queremos o menor k , seu valor é $k = \frac{49}{4}$.

Questão 5 – Considere dois triângulos ABC e DBC, de mesma base \overline{BC} , tais que D é um ponto interno ao triângulo ABC. A medida de \overline{BC} é igual a 10 cm. Com relação aos ângulos internos desses triângulos, sabe-se que: $D\widehat{B}C = B\widehat{C}D$, $D\widehat{C}A = 30^{\circ}$, $D\widehat{B}A = 40^{\circ}$, $B\widehat{A}C = 50^{\circ}$.

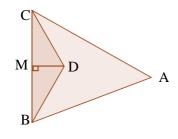


a) Encontre a medida do ângulo \widehat{BDC} .

Seja $\alpha=D\widehat{B}C=B\widehat{C}D$. Logo $C\widehat{B}A=\alpha+40^\circ$ e $B\widehat{C}A=\alpha+30^\circ$. Como a soma dos ângulos internos do triângulo ABC é 180° , temos $C\widehat{B}A+B\widehat{C}A+B\widehat{A}C=180^\circ$, ou seja, $(\alpha+40^\circ)+(\alpha+30^\circ)+50^\circ=180^\circ$. Logo, $2\alpha=180^\circ-40^\circ-30^\circ-50^\circ=60^\circ$ e assim, $\alpha=30^\circ$.

Do triângulo DBC, obtemos a seguinte relação entre seus ângulos internos: $B\widehat{D}C + D\widehat{C}B + C\widehat{B}D = 180^{\circ}$. Logo, $B\widehat{D}C + 2\alpha = 180^{\circ}$, e assim $B\widehat{D}C = 180^{\circ} - 60^{\circ} = 120^{\circ}$.

b) Calcule a medida do segmento \overline{BD} .



Seja M um ponto no segmento \overline{BC} tal que \overline{DM} é a altura do triângulo DBC de base \overline{BC} . Como $D\widehat{BC}=B\widehat{C}D$, segue que o triângulo \overline{DBC} é isósceles de base \overline{BC} , e assim M é o ponto médio do segmento \overline{BC} e

$$BM = \frac{1}{2}BC = \frac{1}{2} \cdot 10 = 5.$$

Do triângulo BMD, retângulo em M, temos

$$\cos(\alpha) = \frac{BM}{BD} \implies \frac{\sqrt{3}}{2} = \frac{5}{BD} \implies BD \cdot \sqrt{3} = 10 \implies BD = \frac{10\sqrt{3}}{3}$$
.

Outra resolução possível:

Usando a lei dos Cossenos para o ângulo $B\widehat{D}C$ no triângulo DBC temos

$$(BC)^2 = (CD)^2 + (BD)^2 - 2 \cdot CD \cdot BD \cdot \cos(120^\circ)$$
.

Como o triângulo DBC é isósceles de base \overline{BC} , segue que BD = CD. Assim,

$$(10)^{2} = (BD)^{2} + (BD)^{2} - 2 \cdot BD \cdot BD \cdot (-\frac{1}{2}) \implies 100 = 2(BD)^{2} + (BD)^{2},$$

ou seja,

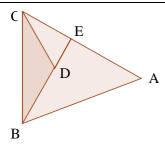
$$(BD)^2 = 100$$
 \Rightarrow $(BD)^2 = \frac{100}{3}$ \Rightarrow $BD = \frac{10}{\sqrt{3}}$ \Rightarrow $BD = \frac{10\sqrt{3}}{3}$.

Outra resolução possível:

Usando a Lei dos Senos nos lados \overline{BC} e \overline{BD} do triângulo DBC temos:

$$\frac{BC}{sen(120^{\circ})} = \frac{BD}{sen(30^{\circ})} \quad \Rightarrow \quad \frac{10}{\frac{\sqrt{3}}{2}} = \frac{BD}{\frac{1}{2}} \quad \Rightarrow \quad BD = \frac{10}{\sqrt{3}} \quad \Rightarrow \quad BD = \frac{10\sqrt{3}}{3}.$$

c) Admitindo-se tg $(50^\circ) = \frac{6}{5}$, determine a medida do segmento \overline{AC} .



Seja E o ponto de interseção do segmento \overline{AC} com o prolongamento do segmento \overline{BD} . Do triângulo ABE, obtemos a seguinte relação: $B\widehat{E}A+E\widehat{A}B+A\widehat{B}E=180^{\rm o}$. Logo $B\widehat{E}A=180^{\rm o}-40^{\rm o}-50^{\rm o}=90^{\rm o}$. Da mesma forma, temos que $B\widehat{E}C=90^{\rm o}$. Como $CD=BD=\frac{10\sqrt{3}}{3}$, do triângulo CED, retângulo em E, obtemos:

$$DE = DC \cdot sen(30^{\circ}) \implies DE = \frac{10\sqrt{3}}{3} \cdot \frac{1}{2} \implies DE = \frac{5\sqrt{3}}{3}$$
.

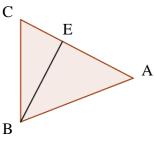
$$CE = DC \cdot \cos(30^{\circ}) \implies CE = \frac{10\sqrt{3}}{3} \cdot \frac{\sqrt{3}}{2} \implies CE = 5$$
.

Logo
$$BE = BD + DE = \frac{10\sqrt{3}}{3} + \frac{5\sqrt{3}}{3}$$
, ou seja, $BE = \frac{15\sqrt{3}}{3} = 5\sqrt{3}$.

Usando que $tg(50^\circ) = \frac{6}{5}$, obtemos:

$$\frac{6}{5} = tg(50^{\circ}) = \frac{BE}{AE} \implies AE = \frac{5}{6}BE \implies AE = \frac{5}{6} \cdot 5\sqrt{3} \implies AE = \frac{25\sqrt{3}}{6} \text{. Assim, } AC = AE + EC = 5 + \frac{25\sqrt{3}}{6} \text{.}$$

Outra resolução possível:



Seja o ponto E no segmento \overline{AC} de tal forma que \overline{BE} seja a altura do triângulo ABC de base \overline{AC} . Logo os triângulos BCE e ABE são retângulos em E. Assim,

$$sen(60^\circ) = \frac{BE}{BC} \implies \frac{\sqrt{3}}{2} = \frac{BE}{10} \implies BE = 5\sqrt{3}$$
.

$$tg(60^{\circ}) = \frac{BE}{CE} \implies \sqrt{3} = \frac{5\sqrt{3}}{CE} \implies CE = 5$$
.

$$tg(50^{\circ}) = \frac{BE}{AE} \implies \frac{6}{5} = \frac{5\sqrt{3}}{AE} \implies AE = \frac{25\sqrt{3}}{6}.$$

Logo
$$AC = AE + CE = 5 + \frac{25\sqrt{3}}{6}$$