COMISSÃO PERMANENTE DE SELEÇÃO – COPESE PRÓ-REITORIA DE GRADUAÇÃO – PROGRAD VESTIBULAR 2010

PROVA DE QUÍMICA

Questão 1:

a)

$Fe^{2+} + 2e^{-} \rightarrow Fe^{0}$		
$Fe^0 \rightarrow Fe^{3+} + 3e^{-}$	$\Delta E = +1,21 \text{ V}$	
$Fe^{2+} \rightarrow Fe^{3+} + e^{-}$	$\Delta E = +0.77 \text{ V}$	

b)

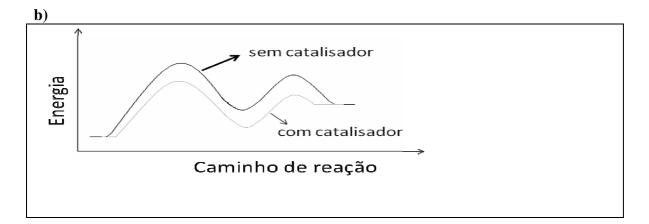
$$SO_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow SO_{3(g)}$$
 ou $2SO_{2(g)} + O_{2(g)} \rightarrow 2SO_{3(g)}$

c)

Agente oxidante	Agente redutor
$O_{2(g)}$	$SO_{2(g)}$

d)

Estrutura	Ligação química	
	Ligações covalente e covalente dativa	


e`

Fe3+: $1s^2 2s^2 2p^6 3s^2 3p^6 3d^3$

Questão 2:

a)

$$CH_3CHO_{(g)} \rightarrow CH_{4(g)} + CO_{(g)}$$


```
v = k_1 [CH_3CHO] [I_2]
```

Variação da concentração de acetaldeído = 3,0 x 10-2 - 1,0 x 10-2 = 2,0 x 10 $0.50 \text{ mol/L} \rightarrow 1 \text{ minuto}$ $2,00 \times 10^{-2} \text{ mol/L} \rightarrow x = 0,04 \text{ minutos} = 2,40 \text{ segundos}$

Questão 3:

$$H_2SO_{4 \text{ (aq)}} + 2 \text{ NaHCO}_{3 \text{ (s)}} \rightarrow Na_2SO_{4 \text{ (aq)}} + 2 H_2O_{(l)} + 2 CO_{2 \text{ (g)}}$$

b)

 $5.0 \text{ mol/L x } 1000 \text{ L} = 5000 \text{ mols de } \text{H}_2\text{SO}_4$ Mols de NaHCO₃ = $2 \times 5000 \text{ mols} = 10000 \text{ mols}$ Massa NaHCO₃ = $10\ 000\ \text{mols}\ x\ 84,0\ \text{g/mol} = 840\ 000\ \text{g} = 840\ \text{kg}$

$$C_1V_1 = C_2V_2$$
; 5,0 mol/L x 10^3 L = C_2 x 10^5 L \rightarrow C₂ = 5 x 10^{-2} mol/L
[H⁺] = 2 x 5 x 10^{-2} mol/L = 0,10 mol/L \rightarrow pH = $-\log[H^+]$ = 1

$$V = (nRT)/p = (1 \times 10^4 \times 0.082 \times 273) / 1.00 = 22.39 \times 10^4 L$$

Questão 4:

<i>a)</i>	
$MM_{vitC} = 176 \text{ g/mol}$	$M = m/(MMxV) = 500 \times 10^{-3}/(176 \times 0.3) = 9.5 \times 10^{-3} \text{ mol/L}$

b)

Semirreação	Interação intermolecular
$I_2 + 2e^- \rightarrow 2\Gamma$	Dipolo induzido – dipolo induzido ou
	Dispersão de London ou forças de van
	der Waals.

Suco de maracujá 7,22 mL - 50 mg0.6 mL — x = 4.16 mg de vitamina C $M = 4.16 \times 10^{-3} / (25 \times 10^{-3} \times 176) = 9.44 \times 10^{-4}$ mol/L

d)

Número de carbonos assimétricos	Explicação
2	A molécula de vitamina C é polar como a molécula de água. Entre as moléculas de vitamina C e água ocorre formação de ligações de hidrogênio.

Questão 5:

a)

Hidratação ou adição de água

b)

c)

2 carbonos assimétricos

d)

e)

Função	Classificação da reação
Hidrocarboneto	Adição de haleto de hidrogênio.