

2ª Etapa

SÓ ABRA QUANDO AUTORIZADO.

Leia atentamente as instruções que se seguem.

- 1 Este Caderno de Provas contém **seis** questões, constituídas de itens e subitens, abrangendo um total de **sete** páginas, numeradas de 4 a 10.
 - Antes de começar a resolver as questões, verifique se seu Caderno está **completo**.
 - Caso haja algum problema, solicite a substituição deste Caderno.
- 2 Esta prova vale 100 pontos, assim distribuídos:
 - Questões 01, 02, 03, 04 e 06: 16 pontos cada uma.
 - Questão 05: 20 pontos.
- 3 NÃO escreva seu nome nem assine nas folhas deste Caderno de Prova.
- 4 Leia cuidadosamente cada questão proposta e escreva a resposta, A LÁPIS, nos espaços correspondentes.
 Só será corrigido o que estiver dentro desses espaços.
- 5 A página 3 deste Caderno de Prova contém valores de constantes e grandezas físicas, uma tabela trigonométrica e um diagrama do espectro eletromagnético.
 - Essas informações poderão ser necessárias para a resolução das questões.
- 6 Nas respostas, é indispensável observar as regras de cálculo com algarismos significativos.

NÃO SERÃO CONSIDERADAS RESPOSTAS SEM EXPOSIÇÃO DE RACIOCÍNIO.

- 7 Não escreva nos espaços reservados à correção.
- 8 **Ao terminar a prova**, chame a atenção do Aplicador, **levantando o braço**. Ele, então, irá até você para **recolher** seu **CADERNO DE PROVA**.

ATENÇÃO: Os Aplicadores **NÃO** estão autorizados a dar quaisquer explicações **sobre questões** de provas. **NÃO INSISTA**, pois, em pedir-lhes ajuda.

FAÇA LETRA LEGÍVEL.

Duração desta prova: TRÊS HORAS.

ATENÇÃO: Terminada a prova, recolha seus objetos, deixe a sala e, em seguida, o prédio. A partir do momento em que sair da sala e até estar fora do prédio, continuam válidas as proibições ao uso de aparelhos eletrônicos e celulares, bem como não lhe é mais permitido o uso dos sanitários.

Impressão digital do polegar direito

COLE AQUI A ETIQUETA

VALORES DE CONSTANTES E GRANDEZAS FÍSICAS

- aceleração da gravidade

- calor específico da água

- carga do elétron (em módulo)

- constante da lei de Coulomb

- constante de Avogadro

- constante de gravitação universal

- constante de Planck

- constante universal dos gases

- densidade da água

- massa do elétron

- massa do próton

- velocidade da luz no vácuo

- velocidade do som no ar

 $g = 10 \ m/s^2$

 $c = 1.0 \ cal/(g \circ C) = 4.2 \times 10^3 \ J/(kg \circ C)$

 $e = 1.6 \times 10^{-19} C$

 $k = 9.0 \times 10^9 Nm^2/C^2$

 $N_{\Delta} = 6.0 \times 10^{23} \text{ mol}^{-1}$

 $G = 6.7 \times 10^{-11} Nm^2/kg^2$

 $h = 6.6 \times 10^{-34} J s$

R = 8.3 J/(mol K)

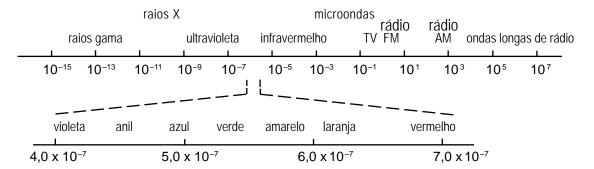
 $d = 1.0 \times 10^3 \, kg/m^3$

 $m_{elétron} = 9.1 \times 10^{-31} kg$

 $m_{próton} = 1.7 \times 10^{-27} kg$

 $c = 3.0 \times 10^8 \, m/s$

 $v_{som} = 340 \ m/s$


TABELA TRIGONOMÉTRICA

Ângulo θ	sen (θ)	cos (θ)
0°	0,000	1,00
5°	0,087	0,996
10°	0,174	0,985
15°	0,259	0,966
20°	0,342	0,940
25°	0,423	0,906
30°	0,500	0,866
35°	0,574	0,819
40°	0,643	0,766
45°	0,707	0,707

Ângulo θ	sen (θ)	cos (θ)
50°	0,766	0,643
55°	0,819	0,574
60°	0,866	0,500
65°	0,906	0,423
70°	0,940	0,342
75°	0,966	0,259
80°	0,985	0,174
85°	0,996	0,087
90°	1,00	0,000

DIAGRAMA DO ESPECTRO ELETROMAGNÉTICO

Comprimento de onda (m)

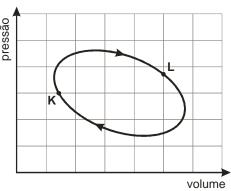
- a distância entre os eixos das rodas é de 2,5 m; e
- 60% do peso do veículo está concentrado sobre as rodas dianteiras e 40%, sobre as rodas traseiras.

1.	Considerando essas informações, CALCULE a distância horizontal entre o eixo da roda dianteira e o centro de gravidade desse automóvel.
2.	Durante uma arrancada, a roda desse automóvel pode deslizar sobre o solo.
	Considerando a situação descrita e as informações do <i>Manual</i> , RESPONDA : Esse tipo de deslizamento ocorre mais facilmente se o automóvel tiver tração nas rodas dianteiras
	ou nas rodas traseiras? JUSTIFIQUE sua resposta.

Duas esferas — ${\bf R}$ e ${\bf S}$ — estão penduradas por fios de mesmo comprimento.

Inicialmente, a esfera **S** está na posição de equilíbrio e o fio da esfera **R** faz um ângulo de 60° com a vertical, como mostrado na figura ao lado.

Em seguida, a esfera **R** é solta, colide com a esfera **S** e retorna a um ponto em que seu fio faz um ângulo de 45° com a vertical.


QUESTÃO 02

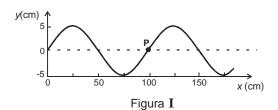
Analisando a situação descrita, RESPONDA: A) Logo após a colisão, qual das duas esferas – R ou S – tem mais energia cinética? JUSTIFIQUE sua resposta. B) Logo após a colisão, o módulo da quantidade de movimento da esfera R é menor, igual ou maior que o da esfera S? JUSTIFIQUE sua resposta.

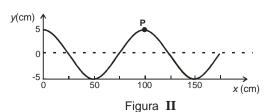
QUESTÃO 01

Uma máquina térmica é constituída de um cilindro, cheio de gás, que tem um êmbolo móvel.

Durante o funcionamento dessa máquina, o gás é submetido a um processo cíclico, que o leva de um estado ${\bf K}$ a outro estado ${\bf L}$ e, depois, de volta ao estado ${\bf K}$ e assim sucessivamente, como representado no diagrama pressão versus volume, mostrado na figura ao lado.

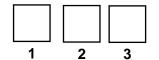
Considerando essas informações, RESPONDA:				
A) Em qual dos dois estados – K ou L – a temperatura do	n dás é ma	aior?		volume
JUSTIFIQUE sua resposta.	gus c me			
B) Em um ciclo completo, em que o gás sai do estado K realiza trabalho líquido?	e volta ad	o mesmo	estado,	essa máquina
JUSTIFIQUE sua resposta.				
C) Tendo-se em vista que se trata de um sistema ideal, é p fornecido a essa máquina?	ossível co	nverter	em trabal	ho todo o calo
JUSTIFIQUE sua resposta.				




Na Figura **I**, está representada, em certo instante, a forma de uma onda que se propaga em uma corda muito comprida e, na Figura **II**, essa mesma onda 0,10 s depois.

O ponto **P** da corda, mostrado em ambas as figuras, realiza um movimento harmônico simples na direção *y* e, entre os dois instantes de tempo representados, desloca-se em um único sentido.

 Considerando essas informações, RESPONDA:
 Essa onda está se propagando no sentido positivo ou negativo do eixo x?



2. Para a onda representada, DETERMINE

B) a velocidade de propagação.

1. Para testar as novidades que lhe foram ensinadas em uma aula de Ciências, Rafael faz algumas experiências, a seguir descritas.

Inicialmente, ele esfrega um pente de plástico em um pedaço de flanela e pendura-o em um fio isolante. Observa, então, que uma bolinha de isopor pendurada próxima ao pente é atraída por ele, como mostrado na Figura I, ao lado.

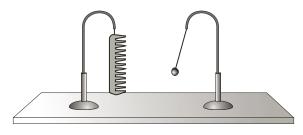


Figura I

EXPLIQUE por que, nesse caso, a bolinha de isopor é atraída pelo pente.		

2. Em seguida, enquanto o pente ainda está eletricamente carregado, Rafael envolve a bolinha de isopor com uma gaiola metálica, como mostrado na Figura II, ao lado, e observa o que acontece.

RESPONDA:

A bolinha de isopor continua sendo atraída pelo pente?

JUSTIFIQUE sua resposta.

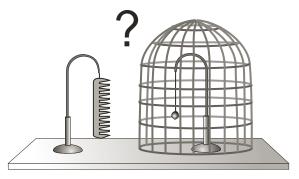



Figura II

3. Para concluir, Rafael envolve o pente, que continua eletricamente carregado, com a gaiola metálica, como mostrado na Figura **III**, ao lado, e, novamente, observa o que acontece.

RESPONDA:

Nessa situação, a bolinha de isopor é atraída pelo pente?

JUSTIFIQUE sua resposta.

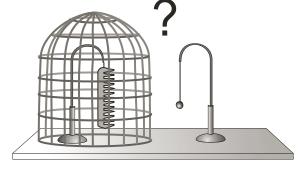
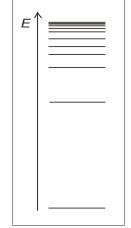


Figura III

QUESTÃO 05


	r igula III	
	 _	_
	$\neg \Box$	

O espectro de emissão de luz do átomo de hidrogênio é discreto, ou seja, são emitidas apenas ondas eletromagnéticas de determinadas frequências, que, por sua vez, fornecem informações sobre os níveis de energia desse átomo.

Na figura ao lado, está representado o diagrama de níveis de energia do átomo de hidrogênio.

1. No século XIX, já se sabia que cada frequência do espectro de emissão do hidrogênio é igual à soma ou à diferença de duas outras frequências desse espectro.

EXPLIQUE por que isso ocorre.

Sabe-se que o espectro do átomo de hidrogênio contém as frequências 2,7×10¹⁴ Hz e 4,6×10¹⁴ Hz.
 A partir desses dados, **DETERMINE** outra frequência desse espectro que corresponde a uma luz emitida na região do visível.

Questões desta prova podem ser reproduzidas para uso pedagógico, sem fins lucrativos, desde que seja mencionada a fonte: **Vestibular 2010 UFMG**.

Reproduções de outra natureza devem ser previamente autorizadas pela Copeve/UFMG.